奇偶排序:
第一轮扫描选择所有的奇数据项对,与相邻偶数比较,a[j]和a[j+1],j是奇数(j=1,3,5...), j<N-1
第二轮扫描选择所有的偶数据项对,与相邻奇数比较,a[j]和a[j+1],j是偶数(j=0,2,4...), j<N-1
奇偶排序的时间复杂度为O(N^2)
/** * 奇偶排序 * @author stone * */ public class OddEvenSort { public static void main(String[] args) { int len = 100; Integer[] ary = new Integer[len]; Random random = new Random(); for (int j = 0; j < len; j++) { ary[j] = random.nextInt(1000); } /* * 交换次数最小也是1次,最大也是(n^2-n)/2次 */ // ary=new Integer[]{10,9,8,7,6,5,4,3,2,1}; //测试交换次数 // ary=new Integer[]{1,2,3,4,5,6,7,8,10,9}; //测试交换次数 System.out.println("-------排序前------"); printAry(ary); long start = System.currentTimeMillis(); orderAsc(ary); long end = System.currentTimeMillis(); System.out.println("排序所用时间:" + (end - start) + "毫秒"); printAry(ary); System.out.println("-----orderAsc升序排序后------比较次数:" + compareCount + ", 交换次数:" + changeCount); } static int compareCount = 0;//比较次数 static int changeCount = 0;//交换次数 /** * 第一轮扫描选择所有的奇数据项对,与相邻偶数比较,a[j]和a[j+1],j是奇数(j=1,3,5...), j<N-1 * 第二轮扫描选择所有的偶数据项对,与相邻奇数比较,a[j]和a[j+1],j是偶数(j=0,2,4...), j<N-1 * @param ary */ public static <T extends Comparable<? super T>> void orderAsc(T[] ary) { int len = ary.length; boolean unsort = true, oddsort = false, evensort = false; while (unsort) { int j = 0; evensort = scan(ary, j, len); j = 1; oddsort = scan(ary, j, len); unsort = oddsort || evensort;//若为false,表示不论奇偶序列,一个符合条件的比较都没有 } } public static <T extends Comparable<? super T>> boolean scan(T[] ary, int j, int len) { boolean unsort = false; for (; j < len - 1; j += 2) { if (ary[j].compareTo(ary[j + 1]) > 0) { T t = ary[j]; ary[j] = ary[j + 1]; ary[j + 1] = t; changeCount++; unsort = true; } compareCount++; } return unsort; } private static void printAry(Object[] ary) { int len = ary.length; for (int j = 0; j < len; j++) { System.out.print(ary[j] + " "); } System.out.println(""); } }
原文地址:http://blog.csdn.net/jjwwmlp456/article/details/40301855