标签:nts long details href 组合 http 曲线 函数 fun
效果如图:
思路:
主要问题在于生成随机控制点。
1. 以start -> end 为z轴建立坐标系,获得 x_Axis, y_Axis, z_Axis
2.以z轴方向随机长度, x轴y轴随机所在位置
3.用贝塞尔曲线公式生成曲线
public class Test : MonoBehaviour { public Transform m_Start; public Transform m_End; Vector3 m_AxisX; Vector3 m_AxisY; Vector3 m_AxisZ; float m_OriLength; List<Vector3> m_PointList; Vector3[] m_BLine; void Start() { m_PointList = new List<Vector3>(); var start = m_Start.position; var end = m_End.position; m_OriLength = Vector3.Distance(start, end); BuildMoveMatrix(start, end); m_PointList.Add(start); RandomPoint(start, end, m_OriLength); m_PointList.Add(end); m_BLine = Bezeir.draw_bezier_curves(m_PointList.ToArray(), m_PointList.Count, 0.005f); } void BuildMoveMatrix(Vector3 start, Vector3 end) { var z = (end - start).normalized; var y = new Vector3(1.0f, 1.0f, -(z.x + z.y) / z.z).normalized; var x = Vector3.Cross(z, y).normalized; m_AxisX = x; m_AxisY = y; m_AxisZ = z; } void RandomPoint(Vector3 start, Vector3 end, float length) { if (length < m_OriLength * 0.3f) return; var len = UnityEngine.Random.Range(length * 0.2f, length * 0.8f); var point = (end - start).normalized * len + start; point = point + m_AxisX * UnityEngine.Random.Range(-0.3f * length, 0.3f * length) + m_AxisY * UnityEngine.Random.Range(-0.3f * length, 0.3f * length); RandomPoint(start, point, Vector3.Distance(start, point)); m_PointList.Add(point); RandomPoint(point, end, Vector3.Distance(point, end)); } } public class Bezeir { public static Vector3[] draw_bezier_curves(Vector3[] points, int count, float step) { List<Vector3> bezier_curves_points = new List<Vector3>(); float t = 0F; do { var temp_point = bezier_interpolation_func(t, points, count); // 计算插值点 t += step; bezier_curves_points.Add(temp_point); } while (t <= 1 && count > 1); // 一个点的情况直接跳出. return bezier_curves_points.ToArray(); // 曲线轨迹上的所有坐标点 } /// <summary> /// n阶贝塞尔曲线插值计算函数 /// 根据起点,n个控制点,终点 计算贝塞尔曲线插值 /// </summary> /// <param name="t">当前插值位置0~1 ,0为起点,1为终点</param> /// <param name="points">起点,n-1个控制点,终点</param> /// <param name="count">n+1个点</param> /// <returns></returns> private static Vector3 bezier_interpolation_func(float t, Vector3[] points, int count) { var PointF = new Vector3(); var part = new float[count]; float sum_x = 0, sum_y = 0, sum_z = 0; for (int i = 0; i < count; i++) { ulong tmp; int n_order = count - 1; // 阶数 tmp = calc_combination_number(n_order, i); sum_x += (float)(tmp * points[i].x * Math.Pow((1 - t), n_order - i) * Math.Pow(t, i)); sum_y += (float)(tmp * points[i].y * Math.Pow((1 - t), n_order - i) * Math.Pow(t, i)); sum_z += (float)(tmp * points[i].z * Math.Pow((1 - t), n_order - i) * Math.Pow(t, i)); } PointF.x = sum_x; PointF.y = sum_y; PointF.z = sum_z; return PointF; } /// <summary> /// 计算组合数公式 /// </summary> /// <param name="n"></param> /// <param name="k"></param> /// <returns></returns> private static ulong calc_combination_number(int n, int k) { ulong[] result = new ulong[n + 1]; for (int i = 1; i <= n; i++) { result[i] = 1; for (int j = i - 1; j >= 1; j--) result[j] += result[j - 1]; result[0] = 1; } return result[k]; } }
参考链接 : https://blog.csdn.net/qq_32688731/article/details/84037072
标签:nts long details href 组合 http 曲线 函数 fun
原文地址:https://www.cnblogs.com/liucUP/p/10755420.html