码迷,mamicode.com
首页 > 编程语言 > 详细

js算法

时间:2019-04-27 12:57:58      阅读:131      评论:0      收藏:0      [点我收藏+]

标签:循环   for   因此   记录   shel   binary   基础   位置   归并   

1.1 原始人冒泡排序

function bubbleSort(arr) {
  var len = arr.length;
  for (var i = 0; i < len; i++) {
    for (var j = 0; j < len - 1 - i; j++) {
      if (arr[j] > arr[j+1]) { //相邻元素两两对比
        var temp = arr[j+1]; //元素交换
        arr[j+1] = arr[j];
        arr[j] = temp;
      }
    }
  }
  return arr;
}
var arr=[3,44,38,5,47,15,36,26,27,2,46,4,19,50,48];
console.log(bubbleSort(arr));//[2, 3, 4, 5, 15, 19, 26, 27, 36, 38, 44, 46, 47, 48, 50] ;
这种算法不多说,有点变成基础的人都能看明白,可以说是“傻瓜排序”

1.2进化版冒泡排序

function bubbleSort2(arr) {
  console.time(‘改进后冒泡排序耗时‘);
  var i = arr.length-1; //初始时,最后位置保持不变  
  while ( i> 0) {
    var pos= 0; //每趟开始时,无记录交换
    for (var j= 0; j< i; j++){
      if (arr[j]> arr[j+1]) {
        pos= j; //记录交换的位置
        var tmp = arr[j]; arr[j]=arr[j+1];arr[j+1]=tmp;
      }
    }
    i= pos; //为下一趟排序作准备
  }
  console.timeEnd(‘改进后冒泡排序耗时‘);
  return arr;
}
var arr=[3,44,38,5,47,15,36,26,27,2,46,4,19,50,48];
console.log(bubbleSort2(arr));//[2, 3, 4, 5, 15, 19, 26, 27, 36, 38, 44, 46, 47, 48, 50] ;
“进化版”冒泡排序算法相对于“原始人”冒泡排序有个亮点,就是每一层的循环都记录上一次排序的位置,这两种排序算法都是先排最后一位,最后一位是最大的,然后以此类推。细细推敲第二种方法显然比第一种方法少走了一些冤枉路,也就是说每一层排完序之后,就记录排到最大的哪一位在什么位置,因为每一层最大的数就是它所在数组的倒数的位数,因此下一次就没必要再循环一遍,相对于第一种就少进行了很多计算。

1.3.升级版冒泡排序

function bubbleSort3(arr3) {
  var low = 0;
  var high= arr.length-1; //设置变量的初始值
  var tmp,j;
  console.time(‘2.改进后冒泡排序耗时‘);
  while (low < high) {
    for (j= low; j< high; ++j) { //正向冒泡,找到最大者
      if (arr[j]> arr[j+1]) {
        tmp = arr[j]; arr[j]=arr[j+1];arr[j+1]=tmp;
      }
    }
    --high; //修改high值, 前移一位
    for (j=high; j>low; --j) { //反向冒泡,找到最小者
      if (arr[j]<arr[j-1]) {
        tmp = arr[j]; arr[j]=arr[j-1];arr[j-1]=tmp;
      }
    } 
    ++low; //修改low值,后移一位
  }
  console.timeEnd(‘2.改进后冒泡排序耗时‘);
  return arr3;
}
var arr=[3,44,38,5,47,15,36,26,27,2,46,4,19,50,48];
console.log(bubbleSort3(arr));//[2, 3, 4, 5, 15, 19, 26, 27, 36, 38, 44, 46, 47, 48, 50] ;
这种排序方式也算是锦上添花,因为前两次的排序都是按最大或者最小方向进行排序,而第三种方法会选择从两头出发一起计算,双管齐下!

1.4 自创版冒泡排序

function bubbleSort3(arr3) {
  var low = 0;
  var high= arr.length-1; //设置变量的初始值
  var tmp,j;
  console.time(‘3.改进后冒泡排序耗时‘);
  while (low < high) {
    var pos1 = 0,pos2=0;
    for (let i= low; i< high; ++i) { //正向冒泡,找到最大者
      if (arr[i]> arr[i+1]) {
        tmp = arr[i]; arr[i]=arr[i+1];arr[i+1]=tmp;
        pos1 = i ;
      }
    }

    high = pos1;// 记录上次位置

    for (let j=high; j>low; --j) { //反向冒泡,找到最小者
      if (arr[j]<arr[j-1]) {
        tmp = arr[j]; arr[j]=arr[j-1];arr[j-1]=tmp;  
        pos2 = j;
      }
    }   
    
    low = pos2; //修改low值
  }
  console.timeEnd(‘3.改进后冒泡排序耗时‘);
  return arr3;
}
var arr=[3,44,38,5,47,15,36,26,27,2,46,4,19,50,48];
console.log(bubbleSort3(arr));//[2, 3, 4, 5, 15, 19, 26, 27, 36, 38, 44, 46, 47, 48, 50] ;

2.1选择排序

function selectionSort(arr) {
  var len = arr.length;
  var minIndex, temp;
  console.time(‘选择排序耗时‘);
  for (var i = 0; i < len - 1; i++) {
    minIndex = i;
    for (var j = i + 1; j < len; j++) {
      if (arr[j] < arr[minIndex]) { //寻找最小的数
        minIndex = j; //将最小数的索引保存
      }
    }
    temp = arr[i];
    arr[i] = arr[minIndex];
    arr[minIndex] = temp;
  }
  console.timeEnd(‘选择排序耗时‘);
  return arr;
}
var arr=[3,44,38,5,47,15,36,26,27,2,46,4,19,50,48];
console.log(selectionSort(arr));//[2, 3, 4, 5, 15, 19, 26, 27, 36, 38, 44, 46, 47, 48, 50];
选择排序似乎比冒泡排序的自创版还要省时间,其实选择排序适合小数据排序,具体这个小数据有多小呢,简单的测试了一下,在1000条以内的数据,选择排序更胜1.3冒泡排序。

3.1插入排序

function insertionSort(array) {
  console.time(‘插入排序耗时:‘);
  for (var i = 1; i < array.length; i++) {
    var key = array[i];
    var j = i - 1;
    while ( array[j] > key) {
      array[j + 1] = array[j];
      j--;
    }
    array[j + 1] = key;
  }
  console.timeEnd(‘插入排序耗时:‘);
  return array;
}
var arr=[3,44,38,5,47,15,36,26,27,2,46,4,19,50,48];
console.log(insertionSort(arr));

3.2升级版 二分法插入排序

function binaryInsertionSort(array) {
  console.time(‘二分插入排序耗时:‘);
  for (var i = 1; i < array.length; i++) {
    var key = array[i], left = 0, right = i - 1;
    while (left <= right) {
      var middle = parseInt((left + right) / 2);
      if (key < array[middle]) {
        right = middle - 1;
      } else {
        left = middle + 1;
      }
    }
    for (var j = i - 1; j >= left; j--) {
      array[j + 1] = array[j];
    }
    array[left] = key;
  }
  console.timeEnd(‘二分插入排序耗时:‘);
  return array;
}
var arr=[3,44,38,5,47,15,36,26,27,2,46,4,19,50,48];
console.log(binaryInsertionSort(arr));//[2, 3, 4, 5, 15, 19, 26, 27, 36, 38, 44, 46, 47, 48, 50];

二分法插入排序第一遍读下去,一脸懵逼,写的是什么鬼,仔细琢磨一下却别有一番风味,听小编慢慢讲下去,首先外层循环没什么疑问,就是简单的遍历一遍数组,那么先看while循环,left和right两个变量可以简单的类比3.1中的已排序的首末两个位置,然后选取未排序的第一个值和已排序的中间位置的值进行比较,这样的话也就是在最坏的情况下每层循环也只是计算了已排序的序列长度的一半的次数,简而言之就是在无限逼近left和right值,找到未排序第一个值应该在的位置。

希尔排序

function shellSort(arr) {
  var len = arr.length,
  temp,
  gap = 1;
  console.time(‘希尔排序耗时:‘);
  while(gap < len/5) { //动态定义间隔序列
    gap =gap5+1;
  }
  for (gap; gap > 0; gap = Math.floor(gap/5)) {
    for (var i = gap; i < len; i++) {
      temp = arr[i];
      for (var j = i-gap; j >= 0 && arr[j] > temp; j-=gap) {
        arr[j+gap] = arr[j];
      }
      arr[j+gap] = temp;
    }
  }
  console.timeEnd(‘希尔排序耗时:‘);
  return arr;
}
var arr=[3,44,38,5,47,15,36,26,27,2,46,4,19,50,48];
console.log(shellSort(arr));//[2, 3, 4, 5, 15, 19, 26, 27, 36, 38, 44, 46, 47, 48, 50];

归并排序

function mergeSort(arr) { //采用自上而下的递归方法
  var len = arr.length;
  if(len < 2) {
    return arr;
  }
  var middle = Math.floor(len / 2),
  left = arr.slice(0, middle),
  right = arr.slice(middle);
  return merge(mergeSort(left), mergeSort(right));
}

function merge(left, right){
  var result = [];
  console.time(‘归并排序耗时‘);
  while (left.length && right.length) {
    if (left[0] <= right[0]) {
      result.push(left.shift());
    } else {
      result.push(right.shift());
    }
  }

  while (left.length){
    result.push(left.shift());
  }
  while (right.length){
    result.push(right.shift());
  }
  console.timeEnd(‘归并排序耗时‘);
  return result;
}
var arr=[3,44,38,5,47,15,36,26,27,2,46,4,19,50,48];
console.log(mergeSort(arr));

抽象版快速排序

function quickSort(array, left, right) {
  console.time(‘1.快速排序耗时‘);
  if (left < right) {
    var x = array[right], i = left - 1, temp;
    for (var j = left; j <= right; j++) {
      if (array[j] <= x) {
        i++;
        temp = array[i];
        array[i] = array[j];
        array[j] = temp;
      }
    }
    console.log(array) ;
    console.log(left,i) ;
    quickSort(array, left, i - 1);
    console.log(array)
    console.log(i,right)
    quickSort(array, i + 1, right);
  }
  console.timeEnd(‘1.快速排序耗时‘);
  console.log(array)
  return array;
}
var arr=[3,44,38,5,47,15,36,26,27,2,46,4,19,50,48];
console.log(quickSort(arr,0,arr.length-1));//[2, 3, 4, 5, 15, 19, 26, 27, 36, 38, 44, 46, 47, 48, 50];

堆排序

function heapSort(array) {
  console.time(‘堆排序耗时‘);
  //建堆
  var heapSize = array.length, temp;
  for (var i = Math.floor(heapSize / 2) - 1; i >= 0; i--) {  
    heapify(array, i, heapSize);
  }
  //堆排序
  for (var j = heapSize - 1; j >= 1; j--) {
    temp = array[0];
    array[0] = array[j];
    array[j] = temp;
    console.log(array)
    heapify(array, 0, --heapSize);
  }
  console.timeEnd(‘堆排序耗时‘);
  return array;
}
function heapify(arr, x, len) {
  var l = 2 x + 1, r = 2 x + 2, largest = x, temp;
  if (l < len && arr[l] > arr[largest]) {
    largest = l;
  }
  if (r < len && arr[r] > arr[largest]) {
    largest = r;
  }
  if (largest != x) {
    temp = arr[x];
    arr[x] = arr[largest];
    arr[largest] = temp;
    console.log(arr)
    heapify(arr, largest, len);
  }
}
var arr=[91,60,96,13,35,65,46,65,10,30,20,31,77,81,22];
console.log(heapSort(arr));//[10, 13, 20, 22, 30, 31, 35, 46, 60, 65, 65, 77, 81, 91, 96];

计数排序

function countingSort(array) {
  var len = array.length,
  B = [],
  C = [],
  min = max = array[0];
  console.time(‘计数排序耗时‘);
  for (var i = 0; i < len; i++) {
    min = min <= array[i] ? min : array[i];
    max = max >= array[i] ? max : array[i];
    C[array[i]] = C[array[i]] ? C[array[i]] + 1 : 1;
  }
  for (var k = 0; k <len; k++) {
    var length = C[k];
    for(var m = 0 ;m <length ; m++){
      B.push(k);
    }
  }
  console.timeEnd(‘计数排序耗时‘);
  return B;
}
var arr = [2, 2, 3, 8, 7, 1, 2, 2, 2, 7, 3, 9, 8, 2, 1, 4, 2, 4, 6, 9, 2];
console.log(countingSort(arr)); //[1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 4, 4, 6, 7, 7, 8, 8, 9, 9];

js算法

标签:循环   for   因此   记录   shel   binary   基础   位置   归并   

原文地址:https://www.cnblogs.com/tuziling/p/10778161.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!