标签:nfa 线程等待 oid its extends 人才 目录 latch 睡眠
在java 1.5中,提供了一些非常有用的辅助类来帮助我们进行并发编程,比如CountDownLatch,CyclicBarrier和Semaphore,今天我们就来学习一下这三个辅助类的用法。
以下是本文目录大纲:
一.CountDownLatch用法
二.CyclicBarrier用法
三.Semaphore用法
CountDownLatch类位于java.util.concurrent包下,利用它可以实现类似计数器的功能。比如有一个任务A,它要等待其他4个任务执行完毕之后才能执行,此时就可以利用CountDownLatch来实现这种功能了。
CountDownLatch类只提供了一个构造器:
1 public CountDownLatch(int count) { }; //参数count为计数值
然后下面这3个方法是CountDownLatch类中最重要的方法:
1 public void await() throws InterruptedException { }; //调用await()方法的线程会被挂起,它会等待直到count值为0才继续执行 2 public boolean await(long timeout, TimeUnit unit) throws InterruptedException { }; //和await()类似,只不过等待一定的时间后count值还没变为0的话就会继续执行 3 public void countDown() { }; //将count值减1
下面看一个例子大家就清楚CountDownLatch的用法了:
1 public class Test { 2 public static void main(String[] args) { 3 final CountDownLatch latch = new CountDownLatch(2); 4 5 new Thread(){ 6 public void run() { 7 try { 8 System.out.println("子线程"+Thread.currentThread().getName()+"正在执行"); 9 Thread.sleep(3000); 10 System.out.println("子线程"+Thread.currentThread().getName()+"执行完毕"); 11 latch.countDown(); 12 } catch (InterruptedException e) { 13 e.printStackTrace(); 14 } 15 }; 16 }.start(); 17 18 new Thread(){ 19 public void run() { 20 try { 21 System.out.println("子线程"+Thread.currentThread().getName()+"正在执行"); 22 Thread.sleep(3000); 23 System.out.println("子线程"+Thread.currentThread().getName()+"执行完毕"); 24 latch.countDown(); 25 } catch (InterruptedException e) { 26 e.printStackTrace(); 27 } 28 }; 29 }.start(); 30 31 try { 32 System.out.println("等待2个子线程执行完毕..."); 33 latch.await(); 34 System.out.println("2个子线程已经执行完毕"); 35 System.out.println("继续执行主线程"); 36 } catch (InterruptedException e) { 37 e.printStackTrace(); 38 } 39 } 40 }
执行结果:
线程Thread-0正在执行 线程Thread-1正在执行 等待2个子线程执行完毕... 线程Thread-0执行完毕 线程Thread-1执行完毕 2个子线程已经执行完毕 继续执行主线程
字面意思回环栅栏,通过它可以实现让一组线程等待至某个状态之后再全部同时执行。叫做回环是因为当所有等待线程都被释放以后,CyclicBarrier可以被重用。我们暂且把这个状态就叫做barrier,当调用await()方法之后,线程就处于barrier了。
CyclicBarrier类位于java.util.concurrent包下,CyclicBarrier提供2个构造器:
1 public CyclicBarrier(int parties, Runnable barrierAction) { 2 } 3 4 public CyclicBarrier(int parties) { 5 }
参数parties指让多少个线程或者任务等待至barrier状态;参数barrierAction为当这些线程都达到barrier状态时会执行的内容。
然后CyclicBarrier中最重要的方法就是await方法,它有2个重载版本:
1 public int await() throws InterruptedException, BrokenBarrierException { }; 2 public int await(long timeout, TimeUnit unit)throws InterruptedException,BrokenBarrierException,TimeoutException { };
第一个版本比较常用,用来挂起当前线程,直至所有线程都到达barrier状态再同时执行后续任务;
第二个版本是让这些线程等待至一定的时间,如果还有线程没有到达barrier状态就直接让到达barrier的线程执行后续任务。
下面举几个例子就明白了:
假若有若干个线程都要进行写数据操作,并且只有所有线程都完成写数据操作之后,这些线程才能继续做后面的事情,此时就可以利用CyclicBarrier了:
1 public class Test { 2 public static void main(String[] args) { 3 int N = 4; 4 CyclicBarrier barrier = new CyclicBarrier(N); 5 for(int i=0;i<N;i++) 6 new Writer(barrier).start(); 7 } 8 static class Writer extends Thread{ 9 private CyclicBarrier cyclicBarrier; 10 public Writer(CyclicBarrier cyclicBarrier) { 11 this.cyclicBarrier = cyclicBarrier; 12 } 13 14 @Override 15 public void run() { 16 System.out.println("线程"+Thread.currentThread().getName()+"正在写入数据..."); 17 try { 18 Thread.sleep(5000); //以睡眠来模拟写入数据操作 19 System.out.println("线程"+Thread.currentThread().getName()+"写入数据完毕,等待其他线程写入完毕"); 20 cyclicBarrier.await(); 21 } catch (InterruptedException e) { 22 e.printStackTrace(); 23 }catch(BrokenBarrierException e){ 24 e.printStackTrace(); 25 } 26 System.out.println("所有线程写入完毕,继续处理其他任务..."); 27 } 28 } 29 }
执行结果:
线程Thread-0正在写入数据... 线程Thread-3正在写入数据... 线程Thread-2正在写入数据... 线程Thread-1正在写入数据... 线程Thread-2写入数据完毕,等待其他线程写入完毕 线程Thread-0写入数据完毕,等待其他线程写入完毕 线程Thread-3写入数据完毕,等待其他线程写入完毕 线程Thread-1写入数据完毕,等待其他线程写入完毕 所有线程写入完毕,继续处理其他任务... 所有线程写入完毕,继续处理其他任务... 所有线程写入完毕,继续处理其他任务... 所有线程写入完毕,继续处理其他任务...
从上面输出结果可以看出,每个写入线程执行完写数据操作之后,就在等待其他线程写入操作完毕。
当所有线程线程写入操作完毕之后,所有线程就继续进行后续的操作了。
如果说想在所有线程写入操作完之后,进行额外的其他操作可以为CyclicBarrier提供Runnable参数:
1 public class Test { 2 public static void main(String[] args) { 3 int N = 4; 4 CyclicBarrier barrier = new CyclicBarrier(N,new Runnable() { 5 @Override 6 public void run() { 7 System.out.println("当前线程"+Thread.currentThread().getName()); 8 } 9 }); 10 11 for(int i=0;i<N;i++) 12 new Writer(barrier).start(); 13 } 14 static class Writer extends Thread{ 15 private CyclicBarrier cyclicBarrier; 16 public Writer(CyclicBarrier cyclicBarrier) { 17 this.cyclicBarrier = cyclicBarrier; 18 } 19 20 @Override 21 public void run() { 22 System.out.println("线程"+Thread.currentThread().getName()+"正在写入数据..."); 23 try { 24 Thread.sleep(5000); //以睡眠来模拟写入数据操作 25 System.out.println("线程"+Thread.currentThread().getName()+"写入数据完毕,等待其他线程写入完毕"); 26 cyclicBarrier.await(); 27 } catch (InterruptedException e) { 28 e.printStackTrace(); 29 }catch(BrokenBarrierException e){ 30 e.printStackTrace(); 31 } 32 System.out.println("所有线程写入完毕,继续处理其他任务..."); 33 } 34 } 35 }
运行结果:
线程Thread-0正在写入数据... 线程Thread-1正在写入数据... 线程Thread-2正在写入数据... 线程Thread-3正在写入数据... 线程Thread-0写入数据完毕,等待其他线程写入完毕 线程Thread-1写入数据完毕,等待其他线程写入完毕 线程Thread-2写入数据完毕,等待其他线程写入完毕 线程Thread-3写入数据完毕,等待其他线程写入完毕 当前线程Thread-3 所有线程写入完毕,继续处理其他任务... 所有线程写入完毕,继续处理其他任务... 所有线程写入完毕,继续处理其他任务... 所有线程写入完毕,继续处理其他任务...
从结果可以看出,当四个线程都到达barrier状态后,会从四个线程中选择一个线程去执行Runnable。
下面看一下为await指定时间的效果:
1 public class Test { 2 public static void main(String[] args) { 3 int N = 4; 4 CyclicBarrier barrier = new CyclicBarrier(N); 5 6 for(int i=0;i<N;i++) { 7 if(i<N-1) 8 new Writer(barrier).start(); 9 else { 10 try { 11 Thread.sleep(5000); 12 } catch (InterruptedException e) { 13 e.printStackTrace(); 14 } 15 new Writer(barrier).start(); 16 } 17 } 18 } 19 static class Writer extends Thread{ 20 private CyclicBarrier cyclicBarrier; 21 public Writer(CyclicBarrier cyclicBarrier) { 22 this.cyclicBarrier = cyclicBarrier; 23 } 24 25 @Override 26 public void run() { 27 System.out.println("线程"+Thread.currentThread().getName()+"正在写入数据..."); 28 try { 29 Thread.sleep(5000); //以睡眠来模拟写入数据操作 30 System.out.println("线程"+Thread.currentThread().getName()+"写入数据完毕,等待其他线程写入完毕"); 31 try { 32 cyclicBarrier.await(2000, TimeUnit.MILLISECONDS); 33 } catch (TimeoutException e) { 34 // TODO Auto-generated catch block 35 e.printStackTrace(); 36 } 37 } catch (InterruptedException e) { 38 e.printStackTrace(); 39 }catch(BrokenBarrierException e){ 40 e.printStackTrace(); 41 } 42 System.out.println(Thread.currentThread().getName()+"所有线程写入完毕,继续处理其他任务..."); 43 } 44 } 45 }
执行结果:
线程Thread-0正在写入数据... 线程Thread-2正在写入数据... 线程Thread-1正在写入数据... 线程Thread-2写入数据完毕,等待其他线程写入完毕 线程Thread-0写入数据完毕,等待其他线程写入完毕 线程Thread-1写入数据完毕,等待其他线程写入完毕 线程Thread-3正在写入数据... java.util.concurrent.TimeoutException Thread-1所有线程写入完毕,继续处理其他任务... Thread-0所有线程写入完毕,继续处理其他任务... at java.util.concurrent.CyclicBarrier.dowait(Unknown Source) at java.util.concurrent.CyclicBarrier.await(Unknown Source) at com.cxh.test1.Test$Writer.run(Test.java:58) java.util.concurrent.BrokenBarrierException at java.util.concurrent.CyclicBarrier.dowait(Unknown Source) at java.util.concurrent.CyclicBarrier.await(Unknown Source) at com.cxh.test1.Test$Writer.run(Test.java:58) java.util.concurrent.BrokenBarrierException at java.util.concurrent.CyclicBarrier.dowait(Unknown Source) at java.util.concurrent.CyclicBarrier.await(Unknown Source) at com.cxh.test1.Test$Writer.run(Test.java:58) Thread-2所有线程写入完毕,继续处理其他任务... java.util.concurrent.BrokenBarrierException 线程Thread-3写入数据完毕,等待其他线程写入完毕 at java.util.concurrent.CyclicBarrier.dowait(Unknown Source) at java.util.concurrent.CyclicBarrier.await(Unknown Source) at com.cxh.test1.Test$Writer.run(Test.java:58) Thread-3所有线程写入完毕,继续处理其他任务...
上面的代码在main方法的for循环中,故意让最后一个线程启动延迟,因为在前面三个线程都达到barrier之后,等待了指定的时间发现第四个线程还没有达到barrier,就抛出异常并继续执行后面的任务。
另外CyclicBarrier是可以重用的,看下面这个例子:
1 public class Test { 2 public static void main(String[] args) { 3 int N = 4; 4 CyclicBarrier barrier = new CyclicBarrier(N); 5 6 for(int i=0;i<N;i++) { 7 new Writer(barrier).start(); 8 } 9 10 try { 11 Thread.sleep(25000); 12 } catch (InterruptedException e) { 13 e.printStackTrace(); 14 } 15 16 System.out.println("CyclicBarrier重用"); 17 18 for(int i=0;i<N;i++) { 19 new Writer(barrier).start(); 20 } 21 } 22 static class Writer extends Thread{ 23 private CyclicBarrier cyclicBarrier; 24 public Writer(CyclicBarrier cyclicBarrier) { 25 this.cyclicBarrier = cyclicBarrier; 26 } 27 28 @Override 29 public void run() { 30 System.out.println("线程"+Thread.currentThread().getName()+"正在写入数据..."); 31 try { 32 Thread.sleep(5000); //以睡眠来模拟写入数据操作 33 System.out.println("线程"+Thread.currentThread().getName()+"写入数据完毕,等待其他线程写入完毕"); 34 35 cyclicBarrier.await(); 36 } catch (InterruptedException e) { 37 e.printStackTrace(); 38 }catch(BrokenBarrierException e){ 39 e.printStackTrace(); 40 } 41 System.out.println(Thread.currentThread().getName()+"所有线程写入完毕,继续处理其他任务..."); 42 } 43 } 44 }
执行结果:
线程Thread-0正在写入数据... 线程Thread-1正在写入数据... 线程Thread-3正在写入数据... 线程Thread-2正在写入数据... 线程Thread-1写入数据完毕,等待其他线程写入完毕 线程Thread-3写入数据完毕,等待其他线程写入完毕 线程Thread-2写入数据完毕,等待其他线程写入完毕 线程Thread-0写入数据完毕,等待其他线程写入完毕 Thread-0所有线程写入完毕,继续处理其他任务... Thread-3所有线程写入完毕,继续处理其他任务... Thread-1所有线程写入完毕,继续处理其他任务... Thread-2所有线程写入完毕,继续处理其他任务... CyclicBarrier重用 线程Thread-4正在写入数据... 线程Thread-5正在写入数据... 线程Thread-6正在写入数据... 线程Thread-7正在写入数据... 线程Thread-7写入数据完毕,等待其他线程写入完毕 线程Thread-5写入数据完毕,等待其他线程写入完毕 线程Thread-6写入数据完毕,等待其他线程写入完毕 线程Thread-4写入数据完毕,等待其他线程写入完毕 Thread-4所有线程写入完毕,继续处理其他任务... Thread-5所有线程写入完毕,继续处理其他任务... Thread-6所有线程写入完毕,继续处理其他任务... Thread-7所有线程写入完毕,继续处理其他任务...
从执行结果可以看出,在初次的4个线程越过barrier状态后,又可以用来进行新一轮的使用。而CountDownLatch无法进行重复使用。
Semaphore翻译成字面意思为 信号量,Semaphore可以控同时访问的线程个数,通过 acquire() 获取一个许可,如果没有就等待,而 release() 释放一个许可。
Semaphore类位于java.util.concurrent包下,它提供了2个构造器:
1 public Semaphore(int permits) { //参数permits表示许可数目,即同时可以允许多少线程进行访问 2 sync = new NonfairSync(permits); 3 } 4 public Semaphore(int permits, boolean fair) { //这个多了一个参数fair表示是否是公平的,即等待时间越久的越先获取许可 5 sync = (fair)? new FairSync(permits) : new NonfairSync(permits); 6 }
下面说一下Semaphore类中比较重要的几个方法,首先是acquire()、release()方法:
1 public void acquire() throws InterruptedException { } //获取一个许可 2 public void acquire(int permits) throws InterruptedException { } //获取permits个许可 3 public void release() { } //释放一个许可 4 public void release(int permits) { } //释放permits个许可
acquire()用来获取一个许可,若无许可能够获得,则会一直等待,直到获得许可。
release()用来释放许可。注意,在释放许可之前,必须先获获得许可。
这4个方法都会被阻塞,如果想立即得到执行结果,可以使用下面几个方法:
1 public boolean tryAcquire() { }; //尝试获取一个许可,若获取成功,则立即返回true,若获取失败,则立即返回false 2 public boolean tryAcquire(long timeout, TimeUnit unit) throws InterruptedException { }; //尝试获取一个许可,若在指定的时间内获取成功,则立即返回true,否则则立即返回false 3 public boolean tryAcquire(int permits) { }; //尝试获取permits个许可,若获取成功,则立即返回true,若获取失败,则立即返回false 4 public boolean tryAcquire(int permits, long timeout, TimeUnit unit) throws InterruptedException { }; //尝试获取permits个许可,若在指定的时间内获取成功,则立即返回true,否则则立即返回false
另外还可以通过availablePermits()方法得到可用的许可数目。
下面通过一个例子来看一下Semaphore的具体使用:
假若一个工厂有5台机器,但是有8个工人,一台机器同时只能被一个工人使用,只有使用完了,其他工人才能继续使用。那么我们就可以通过Semaphore来实现:
1 public class Test { 2 public static void main(String[] args) { 3 int N = 8; //工人数 4 Semaphore semaphore = new Semaphore(5); //机器数目 5 for(int i=0;i<N;i++) 6 new Worker(i,semaphore).start(); 7 } 8 9 static class Worker extends Thread{ 10 private int num; 11 private Semaphore semaphore; 12 public Worker(int num,Semaphore semaphore){ 13 this.num = num; 14 this.semaphore = semaphore; 15 } 16 17 @Override 18 public void run() { 19 try { 20 semaphore.acquire(); 21 System.out.println("工人"+this.num+"占用一个机器在生产..."); 22 Thread.sleep(2000); 23 System.out.println("工人"+this.num+"释放出机器"); 24 semaphore.release(); 25 } catch (InterruptedException e) { 26 e.printStackTrace(); 27 } 28 } 29 } 30 }
执行结果:
工人0占用一个机器在生产...
工人1占用一个机器在生产...
工人2占用一个机器在生产...
工人4占用一个机器在生产...
工人5占用一个机器在生产...
工人0释放出机器
工人2释放出机器
工人3占用一个机器在生产...
工人7占用一个机器在生产...
工人4释放出机器
工人5释放出机器
工人1释放出机器
工人6占用一个机器在生产...
工人3释放出机器
工人7释放出机器
工人6释放出机器
下面对上面说的三个辅助类进行一个总结:
1)CountDownLatch和CyclicBarrier都能够实现线程之间的等待,只不过它们侧重点不同:
CountDownLatch一般用于某个线程A等待若干个其他线程执行完任务之后,它才执行;
而CyclicBarrier一般用于一组线程互相等待至某个状态,然后这一组线程再同时执行;
另外,CountDownLatch是不能够重用的,而CyclicBarrier是可以重用的。
2)Semaphore其实和锁有点类似,它一般用于控制对某组资源的访问权限。
Java并发编程:CountDownLatch、CyclicBarrier和 Semaphore
标签:nfa 线程等待 oid its extends 人才 目录 latch 睡眠
原文地址:https://www.cnblogs.com/lgjava/p/10844996.html