标签:out sklearn nbsp import object dir cti dep roc
For me the easiest way was exporting LabelEncoder as .pkl
file for each column. You have to export the encoder for each column after using the fit_transform()
function
For example
from sklearn.preprocessing import LabelEncoder
import pickle
import pandas as pd
df_train = pd.read_csv(‘traing_data.csv‘)
le = LabelEncoder()
df_train[‘Departure‘] = le.fit_transform(df_train[‘Departure‘])
#exporting the departure encoder
output = open(‘Departure_encoder.pkl‘, ‘wb‘)
pickle.dump(le, output)
output.close()
Then in the testing project, you can load the LabelEncoder object and apply transform()
function directly
from sklearn.preprocessing import LabelEncoder
import pandas as pd
df_test = pd.read_csv(‘testing_data.csv‘)
#load the encoder file
import pickle
pkl_file = open(‘Departure_encoder.pkl‘, ‘rb‘)
le_departure = pickle.load(pkl_file)
pkl_file.close()
df_test[‘Departure‘] = le_departure.transform(df_test[‘Departure‘])
标签:out sklearn nbsp import object dir cti dep roc
原文地址:https://www.cnblogs.com/bonelee/p/10861506.html