标签:sub 树结构 arc tco code 参数 有助于 ref die
两种办法,一种是用百度的API,效果还可以,不过好像每天有50次的调用的限制
from aip import AipImageClassify import cv2 """ 你的 APPID AK SK """ APP_ID = ‘X‘ API_KEY = ‘X‘ SECRET_KEY = ‘XX‘ client = AipImageClassify(APP_ID, API_KEY, SECRET_KEY) """ 读取图片 """ def get_file_content(filePath): with open(filePath, ‘rb‘) as fp: return fp.read() image = get_file_content(‘D:\\before.jpg‘) """ 如果有可选参数 """ options = {} """ 带参数调用图像主体检测 """ ret = client.objectDetect(image, options) print(ret) #会输出四个值,但和python里的不同 # cv2.rectangle(image, 左上角坐标, 右下角坐标, color, 线条粗度) image = cv2.imread(‘D:\\after.jpg‘) cv2.rectangle(image, (24, 39), (464, 404), (0, 255, 0), 2) cv2.imwrite(‘D:\\d99.png‘, image)
还有一种方法是利用opencv的方法,https://blog.csdn.net/liqiancao/article/details/55670749
https://www.cnblogs.com/python-life/articles/8727692.html
如果背景颜色差异比较大的话,效果还不错
# -*- coding:utf-8 -*- """ Author: alan Email: wst.521@163.com Refer: https://blog.csdn.net/liqiancao/article/details/55670749 Note: 使用Python和OpenCV检测图像中的物体并将物体裁剪下来 """ import cv2 import numpy as np # step1:加载图片,转成灰度图 image = cv2.imread(‘D:\\IMG_20190601_110701.jpg‘) gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) # step2:用Sobel算子计算x,y方向上的梯度,之后在x方向上减去y方向上的梯度,通过这个减法,我们留下具有高水平梯度和低垂直梯度的图像区域。 gradX = cv2.Sobel(gray, cv2.CV_32F, dx=1, dy=0, ksize=-1) gradY = cv2.Sobel(gray, cv2.CV_32F, dx=0, dy=1, ksize=-1) # subtract the y-gradient from the x-gradient gradient = cv2.subtract(gradX, gradY) gradient = cv2.convertScaleAbs(gradient) # show image # cv2.imshow("first", gradient) # cv2.waitKey() # step3:去除图像上的噪声。首先使用低通滤泼器平滑图像(9 x 9内核),这将有助于平滑图像中的高频噪声。 # 低通滤波器的目标是降低图像的变化率。如将每个像素替换为该像素周围像素的均值。这样就可以平滑并替代那些强度变化明显的区域。 # 然后,对模糊图像二值化。梯度图像中不大于90的任何像素都设置为0(黑色)。 否则,像素设置为255(白色)。 # blur and threshold the image blurred = cv2.blur(gradient, (9, 9)) _, thresh = cv2.threshold(blurred, 90, 255, cv2.THRESH_BINARY) # SHOW IMAGE # cv2.imshow("thresh", thresh) # cv2.waitKey() # step4:在上图中我们看到蜜蜂身体区域有很多黑色的空余,我们要用白色填充这些空余,使得后面的程序更容易识别昆虫区域, # 这需要做一些形态学方面的操作。 kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (25, 25)) closed = cv2.morphologyEx(thresh, cv2.MORPH_CLOSE, kernel) # show image # cv2.imshow("closed1", closed) # cv2.waitKey() # step5:从上图我们发现图像上还有一些小的白色斑点,这会干扰之后的昆虫轮廓的检测,要把它们去掉。分别执行4次形态学腐蚀与膨胀。 # perform a series of erosions and dilations closed = cv2.erode(closed, None, iterations=4) closed = cv2.dilate(closed, None, iterations=4) # show image # cv2.imshow("closed2", closed) # cv2.waitKey() # step6:找出昆虫区域的轮廓。 # cv2.findContours()函数 # 第一个参数是要检索的图片,必须是为二值图,即黑白的(不是灰度图), # 所以读取的图像要先转成灰度的,再转成二值图,我们在第三步用cv2.threshold()函数已经得到了二值图。 # 第二个参数表示轮廓的检索模式,有四种: # 1. cv2.RETR_EXTERNAL表示只检测外轮廓 # 2. cv2.RETR_LIST检测的轮廓不建立等级关系 # 3. cv2.RETR_CCOMP建立两个等级的轮廓,上面的一层为外边界,里面的一层为内孔的边界信息。如果内孔内还有一个连通物体,这个物体的边界也在顶层。 # 4. cv2.RETR_TREE建立一个等级树结构的轮廓。 # 第三个参数为轮廓的近似方法 # cv2.CHAIN_APPROX_NONE存储所有的轮廓点,相邻的两个点的像素位置差不超过1,即max(abs(x1-x2),abs(y2-y1))==1 # cv2.CHAIN_APPROX_SIMPLE压缩水平方向,垂直方向,对角线方向的元素,只保留该方向的终点坐标,例如一个矩形轮廓只需4个点来保存轮廓信息 # cv2.findContours()函数返回两个值,一个是轮廓本身,还有一个是每条轮廓对应的属性。 # cv2.findContours()函数返回第一个值是list,list中每个元素都是图像中的一个轮廓,用numpy中的ndarray表示。 # 每一个ndarray里保存的是轮廓上的各个点的坐标。我们把list排序,点最多的那个轮廓就是我们要找的昆虫的轮廓。 x = cv2.findContours(closed.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) # import pdb # pdb.set_trace() _a, cnts, _b = x c = sorted(cnts, key=cv2.contourArea, reverse=True)[0] # OpenCV中通过cv2.drawContours在图像上绘制轮廓。 # 第一个参数是指明在哪幅图像上绘制轮廓 # 第二个参数是轮廓本身,在Python中是一个list # 第三个参数指定绘制轮廓list中的哪条轮廓,如果是-1,则绘制其中的所有轮廓 # 第四个参数是轮廓线条的颜色 # 第五个参数是轮廓线条的粗细 # cv2.minAreaRect()函数: # 主要求得包含点集最小面积的矩形,这个矩形是可以有偏转角度的,可以与图像的边界不平行。 # compute the rotated bounding box of the largest contour rect = cv2.minAreaRect(c) # rect = cv2.minAreaRect(cnts[1]) box = np.int0(cv2.boxPoints(rect)) # draw a bounding box arounded the detected barcode and display the image # 生产环境下可以不加框 # cv2.drawContours(image, [box], -1, (0, 255, 0), 3) # cv2.imshow("Image", image) # cv2.imwrite("contoursImage2.jpg", image) # cv2.waitKey(0) # step7:裁剪。box里保存的是绿色矩形区域四个顶点的坐标。我将按下图红色矩形所示裁剪昆虫图像。 # 找出四个顶点的x,y坐标的最大最小值。新图像的高=maxY-minY,宽=maxX-minX。 Xs = [i[0] for i in box] Ys = [i[1] for i in box] x1 = min(Xs) x2 = max(Xs) y1 = min(Ys) y2 = max(Ys) hight = y2 - y1 width = x2 - x1 cropImg = image[y1:y1 + hight, x1:x1 + width] # show image cv2.imshow("cropImg", cropImg) cv2.imwrite(‘D:\\result.jpg‘, cropImg) print("done") cv2.waitKey()
标签:sub 树结构 arc tco code 参数 有助于 ref die
原文地址:https://www.cnblogs.com/marszhw/p/10963498.html