码迷,mamicode.com
首页 > 编程语言 > 详细

机器学习总结2 - 关于激活函数、损失函数、正则化、异常检测算法总结

时间:2019-06-03 14:05:10      阅读:197      评论:0      收藏:0      [点我收藏+]

标签:最大   节点   机器学习   回归   cal   连续   置信区间   rest   iso   

LSTM特性, CNN特性, 损失函数, paper, 项目 ...软件


激活函数:
-> sigmod: 硬饱和性, y(0,1), 斜率趋于0;
-> tanh: 软饱和性, y(-1,1), 虽然输出均值为0, 可以更快收敛, 但斜率依然会趋于0;
-> relu: 当x<0时, 存在硬饱和, y(0, +), 使用leak-relu, 当x<0时, 使斜率不会为0;

损失函数/ 性能指标:
-> 均方差mse, 均方根误差rmse, 常用于回归问题, rmse=500, 置信区间(68% 1a, 95% 2a, 99.7% 3a), means: 68% 的预测值位于实际值的500以内;
而岭回归, lasson回归, 是在 mse + L1_L2 正则项;
-> 交叉熵, 一方面, 当使用sigmod激活函数时, 使用交叉熵, 否则会存在梯度饱和; 另一方面, 在分类问题, 用其判断真实分布与预测分布的差异;
categorical_crossentropy

正则化:
-> 在每层中, 激活函数之前, 使用L1_L2 混合正则化;

 


now() 模型综述:
BI平台, OneCLassSVM, 隔离森林, 异常检测; 随机森林, GBDT, LSTM预测, NLP自然语言, CNN卷积推荐。

-> OneCLassSVM: SVM主要解决: 1.小样本, 2.非线性, 3.高纬度;
样本数据对于真实数据的生成过程, 是九牛一毛, 因此需要使用超平面提升泛化能力;
对于非线性, 使用核函数与松弛变量解决: 以X轴向量为例, 若将向量进行分隔, 需要使用 y = c0 + c1*x + c2*x^2 ;

-> Isolation Forest: 每颗隔离树: 只有两个子节点或两个叶子节点; 而异常值(离群点) 大概率会被分配到叶子节点,
因此可以使用叶子节点到根节点的路径长度判断是否为异常值; 最大深度为log(n);

-> RandomForest: 基于样本分裂与特征分裂的双重随机性, 具有强泛化能力, 抗噪音, 同时应对连续与离散不同的数据结构,
而且各样本集具有相同的分布;

-> GradientTree Boosting: 使用每一颗回归树优化上一步的残差, 超参数: 学习步长避免局部最优 , 采样比例(0,1) 样本独立性影响泛化能力

-> LSTM:


lstm 预测:

[[0:10],[1:11]] -> 预测 [[11],[12]]

机器学习总结2 - 关于激活函数、损失函数、正则化、异常检测算法总结

标签:最大   节点   机器学习   回归   cal   连续   置信区间   rest   iso   

原文地址:https://www.cnblogs.com/ruili07/p/10967146.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!