码迷,mamicode.com
首页 > 编程语言 > 详细

算法的时间复杂度O

时间:2019-06-12 19:50:20      阅读:130      评论:0      收藏:0      [点我收藏+]

标签:次数   log   问题   复杂   保留   while   而不是   复杂度   int   

一、时间复杂度

  在进行算法分析时,语句总的执行次数 T(n) 是关于问题的规模n 的函数,进而分析 T(n) 随 n 的变化情况并确定 T(n) 的数量级,算法的时间复杂度,也就是算法的时间度量,记作:T(n) = O(f( ))。它表示随问题的规模 n 的增大,算法的执行时间的增长率 f(n) 的增长率相同,称作算法的渐近时间复杂度,简称为时间的复杂度,其中 f(n) 是问题规模n的某个函数。

    这样用大写 [ O( ) ] 来体现算法时间复杂度的记法,我们就称之为大O记法。例如:O(n)、O(1)、O(n2)、O(log n) 等等。一般情况下,随着 n 的增大,T(n) 增长最慢的算法为最优算法。

二、推导大O阶的方法

1,用时间1取代运算时间中的所有加法常数。

2,在修改后的运行的函数中,只保留最高阶项。

3,如果最高阶项存在且不是1,则去除与这个项相乘的常数。得到的结果就是大O阶。

例1:时间复杂度为O(1)常数阶的算法

1 int sum = 0, n = 100;    /* 执行一次 */
2 sum = (1+n) *n/2;        /* 执行一次 */
3 printf("the sum is:%d",sum);   /* 执行一次 */

  我们可以看出运行次数的函数是 f(n) = 3。根据我们上面的大O阶公式 1 可以得到,把常数项 3 改为 1,在保留最高阶时发现没有最高阶项,所以时间复杂度为大 O(1)。也就是说,无论算法是 3 次还是 30 次,哪怕是 300 次,这些只要是常数项,它的时间复杂度都为大 O(1),而不是O(3)、O(30)、O(300)。即我们称之为常数阶。

例2:时间复杂度为O(n)线性阶的算法

1 for(int i = 0; i < n; i++) {
2     sum += i;
3 }

  从上面的这段代码我们可以看出,它的时间复杂度为O(n),因为循环体中的代码需要执行n次。

例3:时间复杂度为O(n2)平方阶的算法

1 for(int i = 0; i < n; i++) {
2     for(int j = i; j < n; j++) {
3         //时间复杂度为O(n2)
4     }
5 }

分析:

  当 i = 0时,内循环执行了 n 次,

  当 i = 1时,内循环执行了 n-1 次,

  ......

  当 i = n-1时。执行了 1 次,

  所以总的执行次数为:n = (n-1)+(n-2)+ ··· + 1= n(n+1)/2 = n2/2+n/2。

  由上面的公式可得:第一条代码中没有加法常数项,不考虑;第二条只保留最高阶项,因此保留 n2/2;第三条去除这个项相乘的常数,所以去除了 1/2;最终我们得到的代码段时间复杂度就是 O(n2)。

例4:时间复杂度为O(log n)对数阶的算法

1 int count = 1;
2 while (count < n) {
3     count *= 2;
4 }

  上面代码我们可以看出,count = count * 2 之后就距离 n 更近一步,也就是说,有多少个 2 相乘后大于 n,就退出循环。所以我们可以由 2x = n 推导出 x = log2n ,像这样的循环时间复杂度,我们就称为对数阶的复杂度即为 O(log n)。

三、O阶算法效率排序

   数据结构中我们一般常用的时间复杂度表示有:O(1)、O(n)、O(n2)、O(log n)、O(nlog n)、O(n3)、O(2n)。

  按时间复杂度所耗费的时间从大到小排序依次为:

  O(1) < O(log n) < O(n) < O(nlog n) < O(n2) < O(n3) < O(2n)

算法的时间复杂度O

标签:次数   log   问题   复杂   保留   while   而不是   复杂度   int   

原文地址:https://www.cnblogs.com/guanghe/p/11011534.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!