标签:precision class tracking null bin nbsp sof hit 它的
最近在文献中经常看到precesion,recall,常常忘记了他们的定义,在加上今天又看到评价多标签分类任务性能的度量方法micro F1score和macro F2score。决定再把F1 score一并加进来把定义写清楚,忘记了再来看看。
F1score(以下简称F1)是用来评价二元分类器的度量,它的计算方法如下:
F1是用来衡量二维分类的,那形容多元分类器的性能用什么呢?micro F1score,和macro F2score则是用来衡量多元分类器的性能。
假设对于一个多分类问题,有三个类,分别记为1、2、3,
TPi是指分类i的True Positive;
FPi是指分类i的False Positive;
TNi是指分类i的True Negative;
FNi是指分类i的False Negative。
我们分别计算每个类的精度(precision)
macro 精度 就是所有分类的精度平均值
同样,每个类的recall计算为