标签:运行 个数 优先级 trap jvm 使用 结果 public ystemd
start方法内部会调用方法start方法启动一个线程,该线程返回start方法,同时Java虚拟机调用native start0启动另一个线程调用run方法,此时有两个线程并行执行;
我们来分析下start0方法,start0到底是如何调用run方法的
Thread类里有一个本地方法叫registerNatives,此方法注册一些本地方法给Thread类使用
在OpenJDK官网找到Thread.c
#include "jni.h"
#include "jvm.h"
#include "java_lang_Thread.h"
#define THD "Ljava/lang/Thread;"
#define OBJ "Ljava/lang/Object;"
#define STE "Ljava/lang/StackTraceElement;"
#define ARRAY_LENGTH(a) (sizeof(a)/sizeof(a[0]))
static JNINativeMethod methods[] = {
{"start0", "()V", (void *)&JVM_StartThread}, //Java中Thread类的start方法所调用的start0方法
{"stop0", "(" OBJ ")V", (void *)&JVM_StopThread},
{"isAlive", "()Z", (void *)&JVM_IsThreadAlive},
{"suspend0", "()V", (void *)&JVM_SuspendThread},
{"resume0", "()V", (void *)&JVM_ResumeThread},
{"setPriority0", "(I)V", (void *)&JVM_SetThreadPriority},
{"yield", "()V", (void *)&JVM_Yield},
{"sleep", "(J)V", (void *)&JVM_Sleep},
{"currentThread", "()" THD, (void *)&JVM_CurrentThread},
{"countStackFrames", "()I", (void *)&JVM_CountStackFrames},
{"interrupt0", "()V", (void *)&JVM_Interrupt},
{"isInterrupted", "(Z)Z", (void *)&JVM_IsInterrupted},
{"holdsLock", "(" OBJ ")Z", (void *)&JVM_HoldsLock},
{"getThreads", "()[" THD, (void *)&JVM_GetAllThreads},
{"dumpThreads", "([" THD ")[[" STE, (void *)&JVM_DumpThreads},
};
......
根据关键字"JVM_StartThread"再找到jvm.cpp
JVM_ENTRY(void, JVM_StartThread(JNIEnv* env, jobject jthread))
JVMWrapper("JVM_StartThread");
JavaThread *native_thread = NULL;
bool throw_illegal_thread_state = false;
{
MutexLocker mu(Threads_lock);
if (java_lang_Thread::thread(JNIHandles::resolve_non_null(jthread)) != NULL) {
throw_illegal_thread_state = true;
} else {
jlong size =
java_lang_Thread::stackSize(JNIHandles::resolve_non_null(jthread));
size_t sz = size > 0 ? (size_t) size : 0;
native_thread = new JavaThread(&thread_entry, sz); //请看这里,实例化了一个线程native_thread
if (native_thread->osthread() != NULL) {
// Note: the current thread is not being used within "prepare".
native_thread->prepare(jthread);
}
}
}
sz是大小参数,忽略之,我们看thread_entry是什么
static void thread_entry(JavaThread* thread, TRAPS) {
HandleMark hm(THREAD);
Handle obj(THREAD, thread->threadObj());
JavaValue result(T_VOID);
JavaCalls::call_virtual(&result,
obj,
KlassHandle(THREAD, SystemDictionary::Thread_klass()),
vmSymbols::run_method_name(), //请看这里,jvm调用run_method_name方法
vmSymbols::void_method_signature(),
THREAD);
}
run_method_name在vmSymbols.hpp被定义
/* common method and field names */
template(run_method_name, "run") //run_method_name的名称是"run"
简言之:当前线程调用start方法通知ThreadGroup
当前线程可以运行了,可以被加入了,当前线程启动后,当前线程状态为"Runnable"。另一个线程等待CPU时间片,调用run方法(线程真正执行)。产生一个异步执行的效果;
用start方法来启动线程,真正实现了多线程运行,这时无需等待run方法体代码执行完毕而直接继续执行下面的代码。
代码如下
public class MyThread03 extends Thread{
public void run()
{
try
{
for (int i = 0; i < 3; i++)
{
Thread.sleep((int)(Math.random() * 1000));
System.out.println("run = " + Thread.currentThread().getName());
}
}
catch (InterruptedException e)
{
e.printStackTrace();
}
}
public static void main(String[] args)
{
MyThread03 mt = new MyThread03();
mt.start();
try
{
for (int i = 0; i < 3; i++)
{
Thread.sleep((int)(Math.random() * 1000));
System.out.println("run = " + Thread.currentThread().getName());
}
}
catch (InterruptedException e)
{
e.printStackTrace();
}
}
}
执行结果如下,可以看到,Thead-0和main线程交叉执行,是无序的。很好理解,因为main和Thread-0在争抢CPU资源,这个过程是无序的。
run = main
run = Thread-0
run = main
run = main
run = Thread-0
run = Thread-0
再看一个例子,代码如下
public class MyThread04 extends Thread{
public void run()
{
System.out.println(Thread.currentThread().getName());
}
public static void main(String[] args)
{
MyThread04 mt0 = new MyThread04();
MyThread04 mt1 = new MyThread04();
MyThread04 mt2 = new MyThread04();
mt0.start();
mt1.start();
mt2.start();
}
}
执行结果如下
Thread-0
Thread-2
Thread-1
我们依次启动mt0,mt1,mt2,这说明线程启动顺序也是无序的。因为start方法仅仅返回调用,线程想要执行必须得到CPU时间片再执行run方法,CPU时间片的获得是无序的。
run方法是Thread类的一个普通方法,执行run方法其实是单线程执行
public class MyThread05 extends Thread{
public void run()
{
System.out.println("run = " + Thread.currentThread().getName());
}
public static void main(String[] args)
{
MyThread05 mt = new MyThread05();
mt.run();
try
{
for (int i = 0; i < 3; i++)
{
Thread.sleep((int)(Math.random() * 1000));
System.out.println("run = " + Thread.currentThread().getName());
}
}
catch (InterruptedException e)
{
e.printStackTrace();
}
}
}
输出结果如下
run = main
run = main
run = main
run = main
main线程循环了3次,run方法1次,结果是main线程执行了四次,我们写在run方法体内的被main线程执行,这说明调用run方法执行多线程是不可行的。
判断线程是否存活
public class MyThread06 extends Thread{
public void run()
{
System.out.println("run = " + this.isAlive());
}
public static void main(String[] args) throws Exception
{
MyThread06 mt = new MyThread06();
System.out.println("begin == " + mt.isAlive());
mt.start();
Thread.sleep(100);
System.out.println("end == " + mt.isAlive());
}
}
输出结果如下,增加0.1秒延迟,让线程执行完
begin == false
run = true
end == false
可以看到,执行前false,执行中true,执行后false
返回线程的标识符,线程ID是正值,线程ID在生命周期内不会变化,当线程终止了,线程ID可能会被重用
返回线程名称
返回优先级和设置优先级
优先级越高的线程获取CPU时间片的概率越高
请看如下的例子
public class MyThread07_0 extends Thread{
public void run()
{
System.out.println("MyThread07_0 run priority = " +
this.getPriority());
}
public static void main(String[] args)
{
System.out.println("main thread begin, priority = " +
Thread.currentThread().getPriority());
System.out.println("main thread end, priority = " +
Thread.currentThread().getPriority());
MyThread07_0 thread = new MyThread07_0();
thread.start();
}
}
运行结果如下
main thread begin, priority = 5
main thread end, priority = 5
MyThread07_0 run priority = 5
线程的默认优先级是5
再看如下的例子
public class MyThread07_1 extends Thread {
public void run()
{
System.out.println("MyThread07_1 run priority = " +
this.getPriority());
MyThread07_0 thread = new MyThread07_0();
thread.start();
}
public static void main(String[] args)
{
System.out.println("main thread begin, priority = " +
Thread.currentThread().getPriority());
System.out.println("main thread end, priority = " +
Thread.currentThread().getPriority());
MyThread07_1 thread = new MyThread07_1();
thread.start();
}
}
我们在MyThread07_1线程内部启动MyThread07_0线程,我们观察MyThread07_1和MyThread07_0的优先级有什么关系。
运行结果如下
main thread begin, priority = 5
main thread end, priority = 5
MyThread07_1 run priority = 5
MyThread07_0 run priority = 5
MyThread07_0和MyThread07_1线程的优先级一致,说明线程具有继承性。
现在我们来设置优先级
public class MyThread08 {
static class MyThread08_0 extends Thread {
public void run() {
long beginTime = System.currentTimeMillis();
for (int j = 0; j < 1000000; j++) {}
long endTime = System.currentTimeMillis();
System.out.println("★★★★ MyThread08_0 use time = " +
(endTime - beginTime));
}
}
static class MyThread08_1 extends Thread {
public void run()
{
long beginTime = System.currentTimeMillis();
for (int j = 0; j < 1000000; j++){}
long endTime = System.currentTimeMillis();
System.out.println("☆☆☆☆ MyThread08_1 use time = " +
(endTime - beginTime));
}
}
public static void main(String[] args)
{
for (int i = 0; i < 5; i++)
{
MyThread08_0 mt0 = new MyThread08_0();
mt0.setPriority(5);
mt0.start();
MyThread08_1 mt1 = new MyThread08_1();
mt1.setPriority(4);
mt1.start();
}
}
}
我们给MyThread08_0线程设置更高的优先级5
运行结果如下
★★★★ MyThread08_0 use time = 7
☆☆☆☆ MyThread08_1 use time = 4
★★★★ MyThread08_0 use time = 18
★★★★ MyThread08_0 use time = 16
★★★★ MyThread08_0 use time = 20
★★★★ MyThread08_0 use time = 17
☆☆☆☆ MyThread08_1 use time = 0
☆☆☆☆ MyThread08_1 use time = 10
☆☆☆☆ MyThread08_1 use time = 9
☆☆☆☆ MyThread08_1 use time = 8
可以看到MyThread08_0先执行的次数更多,输出结果为实心五角星的这个。
多运行几次,都会是MyThread08_0先打印完,每次结果都不尽相同,CPU会尽量先让MyThread08_0执行完。
isDaemon方法判断是否是守护线程;
setDaemon设置守护线程
在Java中有两类线程:User Thread(用户线程)、Daemon Thread(守护线程)
我们自定义的线程和main线程都是用户线程,我们熟知的GC(垃圾回收器)就是守护线程。守护线程是用户线程的“奴仆”,当用户线程执行完毕,守护线程就会终止,因为它没有存在的必要了。
如用户线程执行结束,GC无垃圾可回收,它只能死亡
看如下代码
public class MyThread09 extends Thread{
private int i = 0;
public void run()
{
try
{
while (true)
{
i++;
System.out.println(Thread.currentThread().getName()+" i = " + i);
Thread.sleep(1000);
}
}
catch (InterruptedException e)
{
e.printStackTrace();
}
}
public static void main(String[] args)
{
try
{
MyThread09 mt = new MyThread09();
mt.setDaemon(true);
mt.start();
Thread.sleep(5000);
System.out.println("现在是"+Thread.currentThread().getName()+"线程");
Thread.sleep(1);
}
catch (InterruptedException e)
{
e.printStackTrace();
}
}
}
我们自定义MyThread09线程的run方法里是死循环,如果是用户线程,它应该永远地执行下去,现在把它设置成守护线程。
注意:mt.setDaemon(true);要在mt.start();之前,见
否则会抛出IllegalThreadStateException异常
运行结果如下
Thread-0 i = 1
Thread-0 i = 2
Thread-0 i = 3
Thread-0 i = 4
Thread-0 i = 5
现在是main线程
Thread-0 i = 6
MyThread09变成了守护线程,它的使命已经完成。现在是main线程
Thread.sleep(5000)的目的是使main线程沉睡5s,即用户线程(main线程)仍在执行,此时main线程输出,再沉睡1ms,当main线程执行完毕,守护线程就没有存在的意义了,即死亡;
main线程总共执行了大约5001ms(略大于这个数值),Thread-0打印到i=6,说明守护线程在main线程之后死亡,这个时间差极小
设置中断标志位,无法中断线程
public class MyThread10 extends Thread{
public void run()
{
for (int i = 0; i < 500000; i++)
{
System.out.println("i = " + (i + 1));
}
}
public static void main(String[] args)
{
try
{
MyThread10 mt = new MyThread10();
mt.start();
Thread.sleep(2000);
mt.interrupt();
}
catch (InterruptedException e)
{
e.printStackTrace();
}
}
}
输出结果如下
......
i = 499993
i = 499994
i = 499995
i = 499996
i = 499997
i = 499998
i = 499999
i = 500000
可以看到,interrupt()没有中断线程,interrupt()后续将会详细讲解
判断线程是否被中断
等待这个线程死亡,举例说明:
线程A执行join方法,会阻塞线程B,线程A join方法执行完毕,才能执行线程B
代码如下
public class MyThread11 extends Thread{
public void run()
{
try
{
int secondValue = (int)(Math.random() * 1000);
System.out.println(secondValue);
Thread.sleep(secondValue);
}
catch (InterruptedException e)
{
e.printStackTrace();
}
}
public static void main(String[] args) throws Exception
{
MyThread11 mt = new MyThread11();
mt.start();
mt.join();
System.out.println("MyThread11执行完毕之后我再执行");
}
}
输出结果如下
75
MyThread11执行完毕之后我再执行
可以看到,main线程在mt线程之后执行。mt调用join方法,使main线程阻塞,待mt线程执行完毕,方可执行main线程。
返回当前正在执行线程的引用
public class MyThread12 extends Thread{
static
{
System.out.println("静态块的打印:" +
Thread.currentThread().getName());
}
public MyThread12()
{
System.out.println("构造方法的打印:" +
Thread.currentThread().getName());
}
public void run()
{
System.out.println("run()方法的打印:" +
Thread.currentThread().getName());
}
public static void main(String[] args)
{
MyThread12 mt = new MyThread12();
mt.start();
}
}
输出结果
静态块的打印:main
构造方法的打印:main
run()方法的打印:Thread-0
可以看到,构造方法和静态块是main线程在调用,重写的run方法是线程自己在调用。
再看个例子
public class MyThread13 extends Thread{
public MyThread13()
{
System.out.println("MyThread13----->Begin");
System.out.println("Thread.currentThread().getName()----->" +
Thread.currentThread().getName());
System.out.println("this.getName()----->" + this.getName());
System.out.println("MyThread13----->end");
}
public void run()
{
System.out.println("run----->Begin");
System.out.println("Thread.currentThread().getName()----->" +
Thread.currentThread().getName());
System.out.println("this.getName()----->" + this.getName());
System.out.println("run----->end");
}
public static void main(String[] args)
{
MyThread13 mt = new MyThread13();
mt.start();
}
}
输出结果
MyThread13----->Begin
Thread.currentThread().getName()----->main
this.getName()----->Thread-0
MyThread13----->end
run----->Begin
Thread.currentThread().getName()----->Thread-0
this.getName()----->Thread-0
run----->end
可以看到,执行MyThread13构造方法的线程是main,执行MyThread13的线程是Thread-0(当前线程),run方法就是被线程实例所执行。
让当前线程沉睡若干毫秒
public class MyThread14 extends Thread{
public void run()
{
try
{
System.out.println("run threadName = " +
this.getName() + " begin");
Thread.sleep(2000);
System.out.println("run threadName = " +
this.getName() + " end");
}
catch (InterruptedException e)
{
e.printStackTrace();
}
}
public static void main(String[] args)
{
MyThread14 mt = new MyThread14();
mt.start();
}
}
输出结果如下
run threadName = Thread-0 begin
run threadName = Thread-0 end
打印完第一句两秒后打印第二句。
当前线程放弃CPU的使用权,这里的放弃是指当前线程少用CPU资源,最后线程还是会执行完成
public class MyThread15 extends Thread {
public void run()
{
long beginTime = System.currentTimeMillis();
int count = 0;
for (int i = 0; i < 5000000; i++)
{
Thread.yield();
count = count + i + 1;
}
long endTime = System.currentTimeMillis();
System.out.println("用时:" + (endTime - beginTime) + "毫秒!");
}
public static void main(String[] args)
{
MyThread15 mt = new MyThread15();
mt.start();
}
}
输出结果如下
用时:4210毫秒!
可以看到,任务执行完毕,当我们把Thread.yield();注释掉,执行时间只需要7ms。说明当前线程放弃了一些CPU资源。
判断当前线程是否中断,静态版的isInterrupted方法。多线程中断机制,后续会详细解析。
标签:运行 个数 优先级 trap jvm 使用 结果 public ystemd
原文地址:https://www.cnblogs.com/Java-Starter/p/11079239.html