标签:obj nbsp ems 距离 for 代码 数据 test 使用
简单易懂讲解simhash算法 hash 哈希:https://blog.csdn.net/le_le_name/article/details/51615931
simhash算法及原理简介:https://blog.csdn.net/lengye7/article/details/79789206
使用SimHash进行海量文本去重:https://www.cnblogs.com/maybe2030/p/5203186.html#_label3
python使用simhash实现文本相似性对比(全代码展示):https://blog.csdn.net/weixin_43750200/article/details/84789361
simhash的py实现:https://blog.csdn.net/gzt940726/article/details/80460419
详情请查看:https://leons.im/posts/a-python-implementation-of-simhash-algorithm/
(1) 查看simhash值
>>> from simhash import Simhash >>> print ‘%x‘ % Simhash(u‘I am very happy‘.split()).value 9f8fd7efdb1ded7f
Simhash()接收一个token序列,或者叫特征序列。
(2)计算两个simhash值距离
>>> hash1 = Simhash(u‘I am very happy‘.split()) >>> hash2 = Simhash(u‘I am very sad‘.split()) >>> print hash1.distance(hash2)
(3)建立索引
simhash被用来去重。如果两两分别计算simhash值,数据量较大的情况下肯定hold不住。有专门的数据结构,参考:http://www.cnblogs.com/maybe2030/p/5203186.html#_label4
from simhash import Simhash, SimhashIndex # 建立索引 data = { u‘1‘: u‘How are you I Am fine . blar blar blar blar blar Thanks .‘.lower().split(), u‘2‘: u‘How are you i am fine .‘.lower().split(), u‘3‘: u‘This is simhash test .‘.lower().split(), } objs = [(id, Simhash(sent)) for id, sent in data.items()] index = SimhashIndex(objs, k=10) # k是容忍度;k越大,检索出的相似文本就越多 # 检索 s1 = Simhash(u‘How are you . blar blar blar blar blar Thanks‘.lower().split()) print index.get_near_dups(s1) # 增加新索引 index.add(u‘4‘, s1)
标签:obj nbsp ems 距离 for 代码 数据 test 使用
原文地址:https://www.cnblogs.com/-wenli/p/11150476.html