标签:atp click jpg info 程序 dde src black 显示
1 """ 使用Python中NetworkX包绘制深度神经网络结构图 """ 2 # 导入相应包 3 import networkx as nx 4 import matplotlib.pyplot as plt 5 6 # 创建DAG 7 G = nx.DiGraph() 8 9 # 创建结构图顶点列表 10 vertex_list = [‘v‘+str(i) for i in range(1, 22)] 11 12 # 添加结构图顶点 13 G.add_nodes_from(vertex_list) 14 15 # 创建边列表 16 edge_list = [ 17 (‘v1‘, ‘v5‘), (‘v1‘, ‘v6‘), (‘v1‘, ‘v7‘), (‘v1‘, ‘v8‘), (‘v1‘, ‘v9‘), 18 (‘v2‘, ‘v5‘), (‘v2‘, ‘v6‘), (‘v2‘, ‘v7‘), (‘v2‘, ‘v8‘), (‘v2‘, ‘v9‘), 19 (‘v3‘, ‘v5‘), (‘v3‘, ‘v6‘), (‘v3‘, ‘v7‘), (‘v3‘, ‘v8‘), (‘v3‘, ‘v9‘), 20 (‘v4‘, ‘v5‘), (‘v4‘, ‘v6‘), (‘v4‘, ‘v7‘), (‘v4‘, ‘v8‘), (‘v4‘, ‘v9‘), 21 (‘v5‘, ‘v10‘), (‘v5‘, ‘v11‘), (‘v5‘, ‘v12‘), (‘v5‘, ‘v13‘), (‘v5‘, ‘v14‘), (‘v5‘, ‘v15‘), 22 (‘v6‘, ‘v10‘), (‘v6‘, ‘v11‘), (‘v6‘, ‘v12‘), (‘v6‘, ‘v13‘), (‘v6‘, ‘v14‘), (‘v6‘, ‘v15‘), 23 (‘v7‘, ‘v10‘), (‘v7‘, ‘v11‘), (‘v7‘, ‘v12‘), (‘v7‘, ‘v13‘), (‘v7‘, ‘v14‘), (‘v7‘, ‘v15‘), 24 (‘v8‘, ‘v10‘), (‘v8‘, ‘v11‘), (‘v8‘, ‘v12‘), (‘v8‘, ‘v13‘), (‘v8‘, ‘v14‘), (‘v8‘, ‘v15‘), 25 (‘v9‘, ‘v10‘), (‘v9‘, ‘v11‘), (‘v9‘, ‘v12‘), (‘v9‘, ‘v13‘), (‘v9‘, ‘v14‘), (‘v9‘, ‘v15‘), 26 (‘v10‘, ‘v16‘), (‘v10‘, ‘v17‘), (‘v10‘, ‘v18‘), 27 (‘v11‘, ‘v16‘), (‘v11‘, ‘v17‘), (‘v11‘, ‘v18‘), 28 (‘v12‘, ‘v16‘), (‘v12‘, ‘v17‘), (‘v12‘, ‘v18‘), 29 (‘v13‘, ‘v16‘), (‘v13‘, ‘v17‘), (‘v13‘, ‘v18‘), 30 (‘v14‘, ‘v16‘), (‘v14‘, ‘v17‘), (‘v14‘, ‘v18‘), 31 (‘v15‘, ‘v16‘), (‘v15‘, ‘v17‘), (‘v15‘, ‘v18‘), 32 (‘v16‘, ‘v19‘), 33 (‘v17‘, ‘v20‘), 34 (‘v18‘, ‘v21‘) 35 ] 36 37 # 通过列表形式来添加边 38 G.add_edges_from(edge_list) 39 40 # 指定绘制DAG图时每个顶点的位置 41 pos = { 42 ‘v1‘: (-2, 1.5), 43 ‘v2‘: (-2, 0.5), 44 ‘v3‘: (-2, -0.5), 45 ‘v4‘: (-2, -1.5), 46 ‘v5‘: (-1, 2), 47 ‘v6‘: (-1, 1), 48 ‘v7‘: (-1, 0), 49 ‘v8‘: (-1, -1), 50 ‘v9‘: (-1, -2), 51 ‘v10‘: (0, 2.5), 52 ‘v11‘: (0, 1.5), 53 ‘v12‘: (0, 0.5), 54 ‘v13‘: (0, -0.5), 55 ‘v14‘: (0, -1.5), 56 ‘v15‘: (0, -2.5), 57 ‘v16‘: (1, 1), 58 ‘v17‘: (1, 0), 59 ‘v18‘: (1, -1), 60 ‘v19‘: (2, 1), 61 ‘v20‘: (2, 0), 62 ‘v21‘: (2, -1) 63 } 64 65 # 绘制DAG图 66 plt.title(‘Deep Neural Network Structure‘) # 神经网络结构图标题 67 plt.xlim(-2.2, 2.2) # 设置X轴坐标范围 68 plt.ylim(-3, 3) # 设置Y轴坐标范围 69 nx.draw( 70 G, 71 pos=pos, # 点的位置 72 node_color=‘red‘, # 顶点颜色 73 edge_color=‘black‘, # 边的颜色 74 with_labels=False, # 不显示顶点标签 75 font_size=10, # 文字大小 76 node_size=300, # 顶点大小 77 ) 78 79 # 保存图片,图片大小为640*480 80 plt.savefig(‘E:/data/DNN_chart.png‘) 81 82 # 显示图片 83 plt.show()
程序效果展示:2019-07-14 17:24:20
1 """ 利用opencv模块对DNN框架添加文字注释 """ 2 import cv2 3 4 # 读取图片 5 imagepath = ‘E:/data/DNN_chart.png‘ 6 image = cv2.imread(imagepath, 1) 7 8 # 输入层 9 cv2.rectangle(image, (85, 130), (120, 360), (255, 0, 0), 2) 10 cv2.putText(image, "Input_Layer", (15, 390), 1, 1.5, (0, 0, 150), 2, 1) 11 12 # 隐藏层 13 cv2.rectangle(image, (190, 70), (360, 420), (255, 0, 0), 2) 14 cv2.putText(image, "Hidden_Layer", (210, 450), 1, 1.5, (0, 0, 150), 2, 1) 15 16 # 输出层 17 cv2.rectangle(image, (420, 150), (460, 330), (255, 0, 0), 2) 18 cv2.putText(image, "Output_Layer", (380, 360), 1, 1.5, (0, 0, 150), 2, 1) 19 20 # sofrmax层 21 cv2.rectangle(image, (530, 150), (570, 330), (255, 0, 0), 2) 22 cv2.putText(image, "softmax", (500, 130), 1, 1.5, (0, 0, 150), 2, 1) 23 24 # 保存修改后的图片 25 cv2.imwrite(‘E://data/DNN.jpg‘, image) 26 27 plt.show()
程序效果展示:2019-07-14 17:25:52
标签:atp click jpg info 程序 dde src black 显示
原文地址:https://www.cnblogs.com/Junlong/p/11184918.html