标签:中序 public 指针 -- string col tle 头结点 实现
1、创建树的节点
public class Node { public Object data; //存储数据 public Node leftChild; //左子树指针 public Node rightChild; //右字树指针 }
2、二叉树的实现
public class BinTree { Node node; public BinTree() { } public BinTree(Node node) { node.leftChild = node.leftChild; node.rightChild = node.rightChild; } /** * 初始化二叉树头结点 * * @param node :头结点 */ public void initBinTree(Node node) { node.leftChild = null; node.rightChild = null; } /** * 左插入节点 * * @param curr_node * @param element * @return */ public Node insertLeftChild(Node curr_node, Object element) { if (curr_node == null) { return null; } Node newnode = new Node(); //初始化新节点 newnode.data = element; newnode.leftChild = curr_node.leftChild; //插入新节点左子树为原子树node的左子树(---> null) newnode.rightChild = null; curr_node.leftChild = newnode; //转换curr_node节点为当前插入后的左子树 return curr_node.leftChild; } /** * 右插入节点 * * @param curr_node * @param element * @return */ public Node insertRightChild(Node curr_node, Object element) { if (curr_node == null) { return null; } Node saveNode = curr_node.rightChild; Node newNode = new Node(); newNode.data = element; newNode.rightChild = newNode; newNode.rightChild = null; curr_node.rightChild = newNode; return curr_node.rightChild; } /** * 删除左子树 * * @param currNode * @return */ public Node deleteLeftChild(Node currNode) { if (currNode == null || currNode.leftChild == null) { return null; } currNode.leftChild = null; return currNode; } /** * 删除右节点 * * @param currNode * @return */ public Node deleteRightChild(Node currNode) { if (currNode == null || currNode.rightChild == null) { return null; } currNode.rightChild = null; return currNode; } /** * 前序遍历 * * @param root */ public void preOrder(Node root) { if (root != null) { System.out.print(root.data + " "); preOrder(root.leftChild); preOrder(root.rightChild); } } /** * 中序遍历 * * @param root */ public void inOrder(Node root) { if (root != null) { inOrder(root.leftChild); System.out.print(root.data + " "); inOrder(root.rightChild); } } /** * 后序遍历 * * @param root */ public void postOrder(Node root) { if (root != null) { postOrder(root.leftChild); postOrder(root.rightChild); System.out.print(root.data + " "); } } /** * 打印二叉树 * * @param root * @param n */ public void printf(Node root, int n) { if (root == null) { //为空判断 return; } printf(root.rightChild, n + 1); //遍历打印右子树 for (int i = 0; i < n - 1; i++) { System.out.print("\t"); } if (n > 0) { System.out.println("----" + root.data); } printf(root.leftChild, n + 1); } /** * 二叉树查找元素 * @param root * @param x * @return */ public Node search(Node root, Object x) { Node findNode = null; //找到就返回该节点指针,找不到就返回空 if (root != null) { if (root.data == x) { findNode = root; } else { findNode = search(root.leftChild, x); if (findNode == null) { findNode = search(root.rightChild, x); } } } return findNode; } public static void main(String[] args) { Node root = new Node(); root.leftChild = null; root.rightChild = null; BinTree binTree = new BinTree(); Node p = null; p = binTree.insertLeftChild(root, ‘A‘); p = binTree.insertLeftChild(p, ‘B‘); p = binTree.insertLeftChild(p, ‘D‘); p = binTree.insertRightChild(p, ‘G‘); p = binTree.insertRightChild(root.leftChild, ‘C‘); binTree.insertLeftChild(p, ‘E‘); binTree.insertRightChild(p, ‘F‘); binTree.printf(root, 0); System.out.print("前序遍历 "); binTree.preOrder(root.leftChild); System.out.println(); System.out.print("中序遍历 "); binTree.inOrder(root.leftChild); System.out.println(); System.out.print("后序遍历 "); binTree.postOrder(root.leftChild); System.out.println(); Node findNode = binTree.search(root,‘E‘); if (findNode == null){ System.out.println("没有找到E"); }else{ System.out.println("元素E在二叉树中"); } System.out.println("删除元素E"); binTree.deleteLeftChild(p); Node findE = binTree.search(root,‘E‘); if (findE == null){ System.out.println("没有找到E"); }else{ System.out.println("元素E在二叉树中"); } } }
3、实现结果
----F ----C ----E ----A ----B ----G ----D 前序遍历 A B D G C E F 中序遍历 D G B A E C F 后序遍历 G D B E F C A 元素E在二叉树中 删除元素E 没有找到E
标签:中序 public 指针 -- string col tle 头结点 实现
原文地址:https://www.cnblogs.com/karrya/p/11216039.html