码迷,mamicode.com
首页 > 编程语言 > 详细

Java数据结构之算法时间度

时间:2019-07-25 12:07:52      阅读:101      评论:0      收藏:0      [点我收藏+]

标签:保留   png   没有   理解   介绍   程序   距离   for   归并排序   

1.度量一个程序(算法)执行时间的两种方法

1)事后统计的方法

这种方法可行, 但是有两个问题:一是要想对设计的算法的运行性能进行评测,需要实际运行该程序;二是所得时间的统计量依赖于计算机的硬件、软件等环境因素, 这种方式,要在同一台计算机的相同状态下运行,才能比较那个算法速度更快。

2)事前估算的方法

通过分析某个算法的时间复杂度来判断哪个算法更优。

2.时间频度

基本介绍:一个算法花费的时间与算法中语句的执行次数成正比例,哪个算法中语句执行次数多,它花费时间就多。一个算法中的语句执行次数称为语句频度或时间频度。记为T(n)。

举例说明:比如计算1-100所有数字之和,我们设计两种算法:

技术图片

T(n) = n + 1 (加1是因为最后要多做一次i <= end判断)

技术图片

T(n) = 1

3.时间频度举例说明

1)忽略常数项

技术图片

技术图片

结论:

2n+20 和 2n 随着n 变大,执行曲线无限接近, 20可以忽略

3n+10 和 3n 随着n 变大,执行曲线无限接近, 10可以忽略

2)忽略低次项

技术图片

技术图片

结论:

2n^2+3n+10 和 2n^2 随着n 变大, 执行曲线无限接近, 可以忽略 3n+10

n^2+5n+20 和 n^2 随着n 变大,执行曲线无限接近, 可以忽略 5n+20

 3)忽略系数(2次方可忽略,3次方不可以)

技术图片

技术图片

结论:

随着n值变大,5n^2+7n 和 3n^2 + 2n ,执行曲线重合, 说明 这种情况下, 5和3可以忽略。

而n^3+5n 和 6n^3+4n ,执行曲线分离,说明多少次方是关键

4. 时间复杂度

1)一般情况下,算法中的基本操作语句的重复执行次数是问题规模n的某个函数,用T(n)表示,若有某个辅助函数f(n),使得当n趋近于无穷大时,T(n) / f(n) 的极限值为不等于零的常数,则称f(n)是T(n)的同数量级函数。记作 T(n)=O( f(n) ),称O( f(n) )  为算法的渐进时间复杂度,简称时间复杂度。

2)T(n) 不同,但时间复杂度可能相同。 如:T(n)=n²+7n+6 与 T(n)=3n²+2n+2 它们的T(n) 不同,但时间复杂度相同,都为O(n²)。(常数项、低次项、平方系数可忽略)

3)计算时间复杂度的方法

用常数1代替运行时间中的所有加法常数  T(n)=n²+7n+6 => T(n)=n²+7n+1

修改后的运行次数函数中,只保留最高阶项  T(n)=n²+7n+1 => T(n) = n²

去除最高阶项的系数 T(n) = n² => T(n) = n² => O(n²)

5. 常见的时间复杂度

  • 常数阶O(1):只要是没有循环等,无论代码执行了多少行
  • 对数阶O(log2n):求2的多少次方为n执行的次数
  • 线性阶O(n):循环里面的代码会执行n遍
  • 线性对数阶O(nlog2n):将对数阶复杂度的代码循环n遍
  • 平方阶O(n2):把 O(n) 的代码再嵌套循环一遍
  • 立方阶O(n3):相当于三层n循环
  • k次方阶O(nk):相当于k层n循环
  • 指数阶O(2n)

说明:

常见的算法时间复杂度由小到大依次为:Ο(1)<Ο(log2n)<Ο(n)<Ο(nlog2n)<Ο(n2)<Ο(n3)< Ο(nk) <Ο(2n) < O(n!),随着问题规模n的不断增大,上述时间复杂度不断增大,算法的执行效率越低

技术图片

从图中可见,我们应该尽可能避免使用指数阶的算法

1)常数阶O(1):

无论代码执行了多少行,只要是没有循环等复杂结构,那这个代码的时间复杂度就都是O(1)

技术图片

2)对数阶O(log2n)

技术图片

技术图片

说明:在while循环里面,每次都将 i 乘以 2,乘完之后,i 距离 n 就越来越近了。假设循环x次之后,i 就大于 2 了,此时这个循环就退出了,也就是说 2 的 x 次方等于 n,那么 x = log2n也就是说当循环 log2n 次以后,这个代码就结束了。因此这个代码的时间复杂度为:O(log2n) 。 O(log2n) 的这个2 时间上是根据代码变化的,i = i * 3 ,则是 O(log3n) .

3)线性阶O(n)

说明:for循环里面的代码会执行n遍,因此它消耗的时间是随着n的变化而变化的,因此这类代码都可以用O(n)来表示它的时间复杂度

技术图片

4)线性对数阶O(nlog2n):将对数阶复杂度的代码循环n遍

技术图片

说明:线性对数阶O(nlogN) 其实非常容易理解,将时间复杂度为O(logn)的代码循环N遍的话,那么它的时间复杂度就是 n * O(logN),也就是了O(nlogN)

5)平方阶O(n2):把 O(n) 的代码再嵌套循环一遍

技术图片

说明:这段代码其实就是嵌套了2层n循环,它的时间复杂度就是 O(n*n),即  O(n²) 如果将其中一层循环的n改成m,那它的时间复杂度就变成了 O(m*n)

6. 平均时间复杂度和最坏时间复杂度

平均时间复杂度:所有可能的输入实例均以等概率出现的情况下,该算法的运行时间。

最坏时间复杂度:最坏情况下的时间复杂度。一般讨论的时间复杂度均是最坏情况下的时间复杂度。 

(这样做的原因是:最坏情况下的时间复杂度是算法在任何输入实例上运行时间的界限,这就保证了算法的运行时间不会比最坏情况更长。)

平均时间复杂度和最坏时间复杂度是否一致,和算法有关(如图:)。

各排序算法的时间复杂度对比:

技术图片

7.空间复杂度

类似于时间复杂度的讨论,一个算法的空间复杂度(Space Complexity)定义为该算法所耗费的存储空间,它也是问题规模n的函数。

空间复杂度(Space Complexity)是对一个算法在运行过程中临时占用存储空间大小的量度。有的算法需要占用的临时工作单元数与解决问题的规模n有关,它随着n的增大而增大,当n较大时,将占用较多的存储单元,例如快速排序和归并排序算法就属于这种情况。

在做算法分析时,主要讨论的是时间复杂度。从用户使用体验上看,更看重的程序执行的速度。一些缓存产品(redis, memcache)和算法(基数排序)本质就是用空间换时间。

Java数据结构之算法时间度

标签:保留   png   没有   理解   介绍   程序   距离   for   归并排序   

原文地址:https://www.cnblogs.com/MWCloud/p/11243364.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!