标签:最小值 没有 alias source 不重复 har 语法 自定义 cti
// 需要导入 spark sql 内置的函数包
import org.apache.spark.sql.functions._
val spark = SparkSession.builder().appName("aggregations").master("local[2]").getOrCreate()
val empDF = spark.read.json("/usr/file/json/emp.json")
// 注册为临时视图,用于后面演示 SQL 查询
empDF.createOrReplaceTempView("emp")
empDF.show()
注:emp.json 可以从本仓库的resources 目录下载。
// 计算员工人数
empDF.select(count("ename")).show()
// 计算姓名不重复的员工人数
empDF.select(countDistinct("deptno")).show()
通常在使用大型数据集时,你可能关注的只是近似值而不是准确值,这时可以使用 approx_count_distinct 函数,并可以使用第二个参数指定最大允许误差。
empDF.select(approx_count_distinct ("ename",0.1)).show()
获取 DataFrame 中指定列的第一个值或者最后一个值。
empDF.select(first("ename"),last("job")).show()
获取 DataFrame 中指定列的最小值或者最大值。
empDF.select(min("sal"),max("sal")).show()
求和以及求指定列所有不相同的值的和。
empDF.select(sum("sal")).show()
empDF.select(sumDistinct("sal")).show()
内置的求平均数的函数。
empDF.select(avg("sal")).show()
Spark SQL 中还支持多种数学聚合函数,用于通常的数学计算,以下是一些常用的例子:
// 1.计算总体方差、均方差、总体标准差、样本标准差
empDF.select(var_pop("sal"), var_samp("sal"), stddev_pop("sal"), stddev_samp("sal")).show()
// 2.计算偏度和峰度
empDF.select(skewness("sal"), kurtosis("sal")).show()
// 3. 计算两列的皮尔逊相关系数、样本协方差、总体协方差。(这里只是演示,员工编号和薪资两列实际上并没有什么关联关系)
empDF.select(corr("empno", "sal"), covar_samp("empno", "sal"),covar_pop("empno", "sal")).show()
scala> empDF.agg(collect_set("job"), collect_list("ename")).show()
输出:
+--------------------+--------------------+
| collect_set(job)| collect_list(ename)|
+--------------------+--------------------+
|[MANAGER, SALESMA...|[SMITH, ALLEN, WA...|
+--------------------+--------------------+
empDF.groupBy("deptno", "job").count().show()
//等价 SQL
spark.sql("SELECT deptno, job, count(*) FROM emp GROUP BY deptno, job").show()
输出:
+------+---------+-----+
|deptno| job|count|
+------+---------+-----+
| 10|PRESIDENT| 1|
| 30| CLERK| 1|
| 10| MANAGER| 1|
| 30| MANAGER| 1|
| 20| CLERK| 2|
| 30| SALESMAN| 4|
| 20| ANALYST| 2|
| 10| CLERK| 1|
| 20| MANAGER| 1|
+------+---------+-----+
empDF.groupBy("deptno").agg(count("ename").alias("人数"), sum("sal").alias("总工资")).show()
// 等价语法
empDF.groupBy("deptno").agg("ename"->"count","sal"->"sum").show()
// 等价 SQL
spark.sql("SELECT deptno, count(ename) ,sum(sal) FROM emp GROUP BY deptno").show()
输出:
+------+----+------+
|deptno|人数|总工资|
+------+----+------+
| 10| 3|8750.0|
| 30| 6|9400.0|
| 20| 5|9375.0|
+------+----+------+
Scala 提供了两种自定义聚合函数的方法,分别如下:
以下分别使用两种方式来自定义一个求平均值的聚合函数,这里以计算员工平均工资为例。两种自定义方式分别如下:
import org.apache.spark.sql.expressions.Aggregator
import org.apache.spark.sql.{Encoder, Encoders, SparkSession, functions}
// 1.定义员工类,对于可能存在 null 值的字段需要使用 Option 进行包装
case class Emp(ename: String, comm: scala.Option[Double], deptno: Long, empno: Long,
hiredate: String, job: String, mgr: scala.Option[Long], sal: Double)
// 2.定义聚合操作的中间输出类型
case class SumAndCount(var sum: Double, var count: Long)
/* 3.自定义聚合函数
* @IN 聚合操作的输入类型
* @BUF reduction 操作输出值的类型
* @OUT 聚合操作的输出类型
*/
object MyAverage extends Aggregator[Emp, SumAndCount, Double] {
// 4.用于聚合操作的的初始零值
override def zero: SumAndCount = SumAndCount(0, 0)
// 5.同一分区中的 reduce 操作
override def reduce(avg: SumAndCount, emp: Emp): SumAndCount = {
avg.sum += emp.sal
avg.count += 1
avg
}
// 6.不同分区中的 merge 操作
override def merge(avg1: SumAndCount, avg2: SumAndCount): SumAndCount = {
avg1.sum += avg2.sum
avg1.count += avg2.count
avg1
}
// 7.定义最终的输出类型
override def finish(reduction: SumAndCount): Double = reduction.sum / reduction.count
// 8.中间类型的编码转换
override def bufferEncoder: Encoder[SumAndCount] = Encoders.product
// 9.输出类型的编码转换
override def outputEncoder: Encoder[Double] = Encoders.scalaDouble
}
object SparkSqlApp {
// 测试方法
def main(args: Array[String]): Unit = {
val spark = SparkSession.builder().appName("Spark-SQL").master("local[2]").getOrCreate()
import spark.implicits._
val ds = spark.read.json("file/emp.json").as[Emp]
// 10.使用内置 avg() 函数和自定义函数分别进行计算,验证自定义函数是否正确
val myAvg = ds.select(MyAverage.toColumn.name("average_sal")).first()
val avg = ds.select(functions.avg(ds.col("sal"))).first().get(0)
println("自定义 average 函数 : " + myAvg)
println("内置的 average 函数 : " + avg)
}
}
自定义聚合函数需要实现的方法比较多,这里以绘图的方式来演示其执行流程,以及每个方法的作用:
关于 zero
,reduce
,merge
,finish
方法的作用在上图都有说明,这里解释一下中间类型和输出类型的编码转换,这个写法比较固定,基本上就是两种情况:
Encoders.product
方法;scalaByte
,scalaFloat
,scalaShort
等,示例如下:override def bufferEncoder: Encoder[SumAndCount] = Encoders.product
override def outputEncoder: Encoder[Double] = Encoders.scalaDouble
理解了有类型的自定义聚合函数后,无类型的定义方式也基本相同,代码如下:
import org.apache.spark.sql.expressions.{MutableAggregationBuffer, UserDefinedAggregateFunction}
import org.apache.spark.sql.types._
import org.apache.spark.sql.{Row, SparkSession}
object MyAverage extends UserDefinedAggregateFunction {
// 1.聚合操作输入参数的类型,字段名称可以自定义
def inputSchema: StructType = StructType(StructField("MyInputColumn", LongType) :: Nil)
// 2.聚合操作中间值的类型,字段名称可以自定义
def bufferSchema: StructType = {
StructType(StructField("sum", LongType) :: StructField("MyCount", LongType) :: Nil)
}
// 3.聚合操作输出参数的类型
def dataType: DataType = DoubleType
// 4.此函数是否始终在相同输入上返回相同的输出,通常为 true
def deterministic: Boolean = true
// 5.定义零值
def initialize(buffer: MutableAggregationBuffer): Unit = {
buffer(0) = 0L
buffer(1) = 0L
}
// 6.同一分区中的 reduce 操作
def update(buffer: MutableAggregationBuffer, input: Row): Unit = {
if (!input.isNullAt(0)) {
buffer(0) = buffer.getLong(0) + input.getLong(0)
buffer(1) = buffer.getLong(1) + 1
}
}
// 7.不同分区中的 merge 操作
def merge(buffer1: MutableAggregationBuffer, buffer2: Row): Unit = {
buffer1(0) = buffer1.getLong(0) + buffer2.getLong(0)
buffer1(1) = buffer1.getLong(1) + buffer2.getLong(1)
}
// 8.计算最终的输出值
def evaluate(buffer: Row): Double = buffer.getLong(0).toDouble / buffer.getLong(1)
}
object SparkSqlApp {
// 测试方法
def main(args: Array[String]): Unit = {
val spark = SparkSession.builder().appName("Spark-SQL").master("local[2]").getOrCreate()
// 9.注册自定义的聚合函数
spark.udf.register("myAverage", MyAverage)
val df = spark.read.json("file/emp.json")
df.createOrReplaceTempView("emp")
// 10.使用自定义函数和内置函数分别进行计算
val myAvg = spark.sql("SELECT myAverage(sal) as avg_sal FROM emp").first()
val avg = spark.sql("SELECT avg(sal) as avg_sal FROM emp").first()
println("自定义 average 函数 : " + myAvg)
println("内置的 average 函数 : " + avg)
}
}
更多大数据系列文章可以参见 GitHub 开源项目: 大数据入门指南
Spark 系列(十一)—— Spark SQL 聚合函数 Aggregations
标签:最小值 没有 alias source 不重复 har 语法 自定义 cti
原文地址:https://www.cnblogs.com/heibaiying/p/11349790.html