码迷,mamicode.com
首页 > 数据库 > 详细

Oracle - SPM固定执行计划(一)

时间:2019-08-16 19:07:19      阅读:137      评论:0      收藏:0      [点我收藏+]

标签:cursor   优化器   group by   buffer   sel   lan   sql优化   validate   online   

一、前言

生产中偶尔会碰到一些sql,有多种执行计划,其中部分情况是统计信息过旧造成的,重新收集下统计信息就行了。但是有些时候重新收集统计信息也解决不了问题,而开发又在嗷嗷叫,没时间让你去慢慢分析原因的时候,这时临时的解决办法是通过spm去固定一个正确的执行计划,等找到真正原因后再解除该spm。


二、解决办法

1. 通过dbms_xplan.display_cursor查看指定sql都有哪些执行计划

SQL> select * from table(dbms_xplan.display_cursor(‘&sql_id‘,null,‘TYPICAL PEEKED_BINDS‘)); 

Enter value for sql_id: 66a4184u0t6hn
old   1: select * from table(dbms_xplan.display_cursor(‘&sql_id‘,null,‘TYPICAL PEEKED_BINDS‘))
new   1: select * from table(dbms_xplan.display_cursor(‘66a4184u0t6hn‘,null,‘TYPICAL PEEKED_BINDS‘))


SQL_ID  66a4184u0t6hn, child number 0
-------------------------------------
select /*for_test*/ * from test1 where object_id = 1

Plan hash value: 4122059633

---------------------------------------------------------------------------
| Id  | Operation         | Name  | Rows  | Bytes | Cost (%CPU)| Time     |
---------------------------------------------------------------------------
|   0 | SELECT STATEMENT  |       |       |       |   693 (100)|          |
|*  1 |  TABLE ACCESS FULL| TEST1 |   173K|    15M|   693   (1)| 00:00:09 |
---------------------------------------------------------------------------


SQL_ID  66a4184u0t6hn, child number 1
-------------------------------------
select /*for_test*/ * from test1 where object_id = 1

Plan hash value: 2214001748

-----------------------------------------------------------------------------------------
| Id  | Operation                   | Name      | Rows  | Bytes | Cost (%CPU)| Time     |
-----------------------------------------------------------------------------------------
|   0 | SELECT STATEMENT            |           |       |       |     2 (100)|          |
|   1 |  TABLE ACCESS BY INDEX ROWID| TEST1     |    11 |  1056 |     2   (0)| 00:00:01 |
|*  2 |   INDEX RANGE SCAN          | IDX_TEST1 |       |       |     1   (0)| 00:00:01 |
-----------------------------------------------------------------------------------------

 

2. 查询该sql的历史执行情况

SQL> col snap_id for 99999999                                                                                   
SQL> col date_time for a30                                                                                      
SQL> col plan_hash for 9999999999                                                                               
SQL> col executions for 99999999                                                                                
SQL> col avg_etime_s heading ‘etime/exec‘ for 9999999.99                                                        
SQL> col avg_lio heading ‘buffer/exec‘ for 99999999999                                                          
SQL> col avg_pio heading ‘diskread/exec‘ for 99999999999                                                        
SQL> col avg_cputime_s heading ‘cputim/exec‘ for 9999999.99                                                     
SQL> col avg_row heading ‘rows/exec‘ for 9999999                                                                
SQL> select * from(                                                                                             
select distinct                                                                                            
s.snap_id,                                                                                                 
to_char(s.begin_interval_time,‘mm/dd/yy_hh24mi‘) || to_char(s.end_interval_time,‘_hh24mi‘) date_time,      
sql.plan_hash_value plan_hash,                                                                             
sql.executions_delta executions,                                                                           
(sql.elapsed_time_delta/1000000)/decode(sql.executions_delta,null,1,0,1,sql.executions_delta) avg_etime_s, 
sql.buffer_gets_delta/decode(sql.executions_delta,null,1,0,1,sql.executions_delta) avg_lio,                
sql.disk_reads_delta/decode(sql.executions_delta,null,1,0,1,sql.executions_delta) avg_pio,                 
(sql.cpu_time_delta/1000000)/decode(sql.executions_delta,null,1,0,1,sql.executions_delta) avg_cputime_s,   
sql.rows_processed_total/decode(sql.executions_delta,null,1,0,1,sql.executions_delta) avg_row              
from dba_hist_sqlstat sql, dba_hist_snapshot s                                                             
where sql.instance_number =(select instance_number from v$instance)                                        
and sql.dbid =(select dbid from v$database)                                                                
and s.snap_id = sql.snap_id                                                                                
and sql_id = trim(‘&sql_id‘) order by s.snap_id desc)                                                      
where rownum <= 100;                                                                                       

Enter value for sql_id: 66a4184u0t6hn
old  16: and sql_id = trim(‘&sql_id‘) order by s.snap_id desc)
new  16: and sql_id = trim(‘66a4184u0t6hn‘) order by s.snap_id desc)

  SNAP_ID DATE_TIME                        PLAN_HASH EXECUTIONS  etime/exec  buffer/exec diskread/exec cputim/exec rows/exec
--------- ------------------------------ ----------- ---------- ----------- ------------ ------------- ----------- ---------
       39 08/16/19_1500_1600              2214001748          1         .12        25839          2901         .10    173927
       39 08/16/19_1500_1600              4122059633          3         .11        13992           847         .11    173927


3. 绑定执行计划

从前两步中可以看到该sql有两条执行计划,假如plan_hash_value为’2214001748’才是对的,而此时数据库选择的是另一条执行计划,我们可以通过执行以下function去将执行计划固定为我们想要的。
SQL> var temp number;
SQL> begin
:temp := dbms_spm.load_plans_from_cursor_cache(sql_id=>‘66a4184u0t6hn‘, plan_hash_value=>2214001748);
end;
/


三、做个实验

1. 准备测试表

实验环境,使用scott账号,并给scott赋予dba权限

SQL> create table test1 as select * from dba_objects;
SQL> insert into test1 select * from test1;
SQL> update test1 set object_id = 1 where rownum < (select count(*) from test1) - 10;
SQL> commit;

SQL> select object_id, count(*) from test1 group by object_id;

 OBJECT_ID   COUNT(*)
---------- ----------
         1     173927
     82112          1
     82121          1
     82118          1
     82119          1
     82122          1
     82113          1
     82114          1
     82120          1
     82115          1
     82116          1
     82117          1

 

2. 创建索引并收集统计信息

SQL> create index idx_test1 on test1(object_id) online;

SQL> begin
dbms_stats.gather_table_stats(ownname => ‘SCOTT‘,
tabname => ‘TEST1‘,
cascade => true, 
method_opt => ‘for columns object_id size 10‘,
no_invalidate => false);
end;
/

 

3. 通过修改优化器模式,模拟同样的sql产生两条不同的执行计划

开启一个窗口A
SQL> set autot trace
SQL> alter session set optimizer_mode = all_rows;  // 11g默认的值
SQL> select /*for_test*/ * from test1 where object_id = 1;

Execution Plan
----------------------------------------------------------
Plan hash value: 4122059633

---------------------------------------------------------------------------
| Id  | Operation         | Name  | Rows  | Bytes | Cost (%CPU)| Time     |
---------------------------------------------------------------------------
|   0 | SELECT STATEMENT  |       |   173K|    15M|   693   (1)| 00:00:09 |
|*  1 |  TABLE ACCESS FULL| TEST1 |   173K|    15M|   693   (1)| 00:00:09 |
---------------------------------------------------------------------------

 

开启另一个窗口B
SQL> set autot trace
SQL> alter session set optimizer_mode = first_rows_10;
SQL> select /*for_test*/ * from test1 where object_id = 1;

Execution Plan
----------------------------------------------------------
Plan hash value: 2214001748

-----------------------------------------------------------------------------------------
| Id  | Operation                   | Name      | Rows  | Bytes | Cost (%CPU)| Time     |
-----------------------------------------------------------------------------------------
|   0 | SELECT STATEMENT            |           |    11 |  1056 |     2   (0)| 00:00:01 |
|   1 |  TABLE ACCESS BY INDEX ROWID| TEST1     |    11 |  1056 |     2   (0)| 00:00:01 |
|*  2 |   INDEX RANGE SCAN          | IDX_TEST1 |       |       |     1   (0)| 00:00:01 |
-----------------------------------------------------------------------------------------

 

再开启一个窗口C
SQL> select sql_id, sql_text, optimizer_mode, plan_hash_value, child_number from v$sql where sql_text like ‘select /*for_test*/ * from test1%‘;

SQL_ID        SQL_TEXT                                                OPTIMIZER_ PLAN_HASH_VALUE CHILD_NUMBER
------------- ------------------------------------------------------- ---------- --------------- ------------
66a4184u0t6hn select /*for_test*/ * from test1 where object_id = 1    ALL_ROWS        4122059633            0
66a4184u0t6hn select /*for_test*/ * from test1 where object_id = 1    FIRST_ROWS      2214001748            1

 

可以看到,因为优化器模式的不同,相同的sql产生了两条截然不同的执行计划
当optimizer_mode = all_rows为全表扫描,当optimizer_mode = first_rows_10为索引扫描

 

4. 绑定执行计划

再新开一个窗口D,执行
SQL> set autot trace
SQL> select /*for_test*/ * from test1 where object_id = 1;

Execution Plan
----------------------------------------------------------
Plan hash value: 4122059633

---------------------------------------------------------------------------
| Id  | Operation         | Name  | Rows  | Bytes | Cost (%CPU)| Time     |
---------------------------------------------------------------------------
|   0 | SELECT STATEMENT  |       |   173K|    15M|   693   (1)| 00:00:09 |
|*  1 |  TABLE ACCESS FULL| TEST1 |   173K|    15M|   693   (1)| 00:00:09 |
---------------------------------------------------------------------------


可以看到执行计划为全表扫描,跟窗口A一样,这个是正常的

通过执行以下function去将执行计划固定为索引扫描
SQL> var temp number;
SQL> begin
:temp := dbms_spm.load_plans_from_cursor_cache(sql_id=>‘66a4184u0t6hn‘, plan_hash_value=>2214001748);
end;
/

再执行以下sql
SQL> select /*for_test*/ * from test1 where object_id = 1;

Execution Plan
----------------------------------------------------------
Plan hash value: 2214001748

-----------------------------------------------------------------------------------------
| Id  | Operation                   | Name      | Rows  | Bytes | Cost (%CPU)| Time     |
-----------------------------------------------------------------------------------------
|   0 | SELECT STATEMENT            |           |    11 |  1056 |     2   (0)| 00:00:01 |
|   1 |  TABLE ACCESS BY INDEX ROWID| TEST1     |    11 |  1056 |     2   (0)| 00:00:01 |
|*  2 |   INDEX RANGE SCAN          | IDX_TEST1 |   173K|       |     1   (0)| 00:00:01 |
-----------------------------------------------------------------------------------------

Note
-----
   - SQL plan baseline "SQL_PLAN_9657urkb9u2tnf24a05ff" used for this statement


可以看到spm已经生效了


四、删除spm

当我们找到sql执行计划突变的原因了,解决问题之后,就可以删除spm了。如何删除spm呢?

新开窗口E
查看当前sql的执行计划基线
SQL> select sql_handle, plan_name, origin from dba_sql_plan_baselines where sql_text like ‘select /*for_test*/ * from test1%‘;

SQL_HANDLE                     PLAN_NAME                      ORIGIN
------------------------------ ------------------------------ --------------
SQL_9314fabc969d0b34           SQL_PLAN_9657urkb9u2tnf24a05ff MANUAL-LOAD
SQL_9314fabc969d0b34           SQL_PLAN_9657urkb9u2tnfe026eff AUTO-CAPTURE

 

可以看到该sql有两条PLAN_NAME,一个是系统自动捕获的,一个是我们手工绑定的,反正我们不再需要这个了,统统删除
通过执行以下function去将执行计划基线删除
SQL> var temp number;
SQL> begin
:temp := dbms_spm.drop_sql_plan_baseline(sql_handle=>‘SQL_9314fabc969d0b34‘, plan_name=>NULL);
end;
/

查看当前sql的执行计划基线
SQL> select sql_handle, plan_name, origin from dba_sql_plan_baselines where sql_text like ‘select /*for_test*/ * from test1%‘;
no rows selected

再在窗口D中执行以下sql
SQL> select /*for_test*/ * from test1 where object_id = 1;

Execution Plan
----------------------------------------------------------
Plan hash value: 4122059633

---------------------------------------------------------------------------
| Id  | Operation         | Name  | Rows  | Bytes | Cost (%CPU)| Time     |
---------------------------------------------------------------------------
|   0 | SELECT STATEMENT  |       |   173K|    15M|   693   (1)| 00:00:09 |
|*  1 |  TABLE ACCESS FULL| TEST1 |   173K|    15M|   693   (1)| 00:00:09 |
---------------------------------------------------------------------------


可以看到执行计划又变成默认的全表扫描了

 

五、说明

文章例子整理于《基于oracle的sql优化》,后面将写另一个场景,就是如果系统里就一个执行计划,但是该执行计划是有问题的,如何去手工生成一个正确的执行计划,然后绑定。

Oracle - SPM固定执行计划(一)

标签:cursor   优化器   group by   buffer   sel   lan   sql优化   validate   online   

原文地址:https://www.cnblogs.com/ddzj01/p/11365541.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!