标签:操作符 最大 分配 number 就是 内存对齐 长度 end sign
PHP的变量使用起来非常方便,其基本结构是底层实现的zval,PHP7采用了全新的zval,由此带来了非常大的性能提升,本文重点分析PHP7的zval的改变。
typedef struct _zval_struct {
zvalue_value value; // (长度16字节,具体看下面的分析)
zend_uint refcount__gc; // unsigned int (长度4字节)
zend_uchar type; // unsigned char (长度1字节)
zend_uchar is_ref__gc; // unsigned char (长度1字节)
} zval
typedef union _zvalue_value {
long lval; // 用于 bool 类型、整型和资源类型(长度8字节)
double dval; // 用于浮点类型(长度8字节)
struct { // 用于字符串
char *val; // 字符串指针(长度8字节)
int len; //字符串长度(长度4字节)
} str;
HashTable *ht; // 用于数组(长度8字节)
zend_object_value obj; // 用于对象(12字节)
zend_ast *ast; // 用于常量表达式(长度8字节)
} zvalue_value;
typedef struct _zval_gc_info {
zval z;
union {
gc_root_buffer *buffered;
struct _zval_gc_info *next;
} u; // (长度8字节)
} zval_gc_info;
所以在PHP里面,给一个变量赋值,实际上会转换成这样来运行
<?php
$var = 123
=>
zval.value = 123
zval.type = IS_LONG
zval.refcount__gc= 0
zval.is_ref__gc = 0
...
struct _zval_struct {
union {
zend_long lval; // 整型(长度8字节)
double dval; // 浮点型(长度8字节)
zend_refcounted *counted; // 引用计数(长度8字节)
zend_string *str; // 字符串类型(长度8字节)
zend_array *arr; // 数组(长度8字节)
zend_object *obj; // 对象(长度8字节)
zend_resource *res; // 资源型(长度8字节)
zend_reference *ref; // 引用型(长度8字节)
zend_ast_ref *ast; //抽象语法树(长度8字节)
zval *zv; // zval类型(长度8字节)
void *ptr; // 指针类型(长度8字节)
zend_class_entry *ce; // class类型(长度8字节)
zend_function *func; // function类型(长度8字节)
struct {
uint32_t w1; // (长度4字节)
uint32_t w2; // (长度4字节)
} ww; // 长度8字节
} value; // 因为是联合体,所以实际上整个value只用了8字节
union {
struct {
ZEND_ENDIAN_LOHI_4(
zend_uchar type, // zval的类型(长度1字节)
zend_uchar type_flags, //对应变量类型特有的标记(长度1字节)
zend_uchar const_flags, // 常量类型标记(长度1字节)
zend_uchar reserved) // 保留字段(长度1字节)
} v; // 总共长度是4字节
uint32_t type_info; // 其实就是v的值位运算结果(长度4字节)
} u1; // u1也是联合体,总共长度4字节
union {
uint32_t var_flags;
uint32_t next; // 用来解决哈希冲突的(长度4字节)
uint32_t cache_slot; // 运行时缓存(长度4字节)
uint32_t lineno; // zend_ast_zval行号(长度4字节)
uint32_t num_args; // Ex(This) 参数个数(长度4字节)
uint32_t fe_pos; // foreach 的位置(长度4字节)
uint32_t fe_iter_idx; // foreach 迭代器游标(长度4字节)
} u2; // u2也是联合体,总共长度4字节
};
zvalue.u1.type
/* regular data types */
#define IS_UNDEF 0
#define IS_NULL 1
#define IS_FALSE 2
#define IS_TRUE 3
#define IS_LONG 4
#define IS_DOUBLE 5
#define IS_STRING 6
#define IS_ARRAY 7
#define IS_OBJECT 8
#define IS_RESOURCE 9
#define IS_REFERENCE 10
/* constant expressions */
#define IS_CONSTANT_AST 11
/* internal types (伪类型)*/
#define IS_INDIRECT 13
#define IS_PTR 14
#define _IS_ERROR 15
/* fake types used only for type hinting (Z_TYPE(zv) can not use them) 内部类型*/
#define _IS_BOOL 16
#define IS_CALLABLE 17
#define IS_ITERABLE 18
#define IS_VOID 19
#define _IS_NUMBER 20
struct _zend_string {
zend_refcounted_h gc; // 引用计数,变量引用信息
zend_ulong h; // 哈希值,数组中计算索引时会用到
size_t len; // 字符串长度
char val[1]; // 字符串内容
};
zval.value->gc.u.flags 这个标记代表了下面几种不同类型的字符串
IS_STR_PERSISTENT(通过malloc分配的)
IS_STR_INTERNED(php代码里写的一些字面量,比如函数名、变量值)
IS_STR_PERMANENT(永久值,生命周期大于request)
IS_STR_CONSTANT(常量)
IS_STR_CONSTANT_UNQUALIFIED
整数是标量,在容器中zval直接存储
$a = 666;
// $a = zval_1(u1.v.type=IS_LONG,value.lval=666)
$b = $a;
// $a = zval_1(u1.v.type=IS_LONG,value.lval=666)
// $b = zval_2(u1.v.type=IS_LONG,value.lval=666)
unset($a);
// $a = zval_1(u1.v.type=IS_UNDEF,value.lval=666)
数组的基本结构是基于key value的 HashTable,同时是一个双向链表。熟悉数据结构的都知道,对一个字符串Hash的时候有可能产生哈希冲突,PHP是怎么解决的?当发生冲突的时候,PHP在该映射后面会加上一条链表,哈希冲突后就会从链表中找值。使用了双向链表的好处是,我们对数组最常用的操作就是遍历数组,通过双向链表,我们可以很方便进行遍历。你可能会问,那如果仅仅是这样,单向链表不也解决了吗?还节省点空间。实际上,之所以用双向链表的一个原因,是因为链表在删除元素的时候,就必须找到上一个元素,把它的指针指向到下下个元素,双向链表已经储存了上一个元素的指针,而单向链表就必须遍历整个HashTable,时间复杂度将会是很差的O(n)。
这个是PHP数组的大概样子,后面会专门写一篇来概述是数组HashTable的实现。
PHP中很多依赖外部的操作都是资源类型,比如文件资源 Socket连接资源,资源类型的定义如下
struct _zend_resource{
zend_refcounted_h gc;
int handle;
int type;
void *ptr; //指针,根据使用场景转换为任何类型
}
struct _zend_object {
zend_refcounted_h gc;
uint32_t handle;
zend_class_entry *ce; //对象对应的class类
const zend_object_handlers *handlers;
HashTable *properties; //对象属性哈希表
zval properties_table[1];
};
properties 是一个HashTable ,key 对象的属性 ,value是对象在properties_table 数组中的偏移量,值真正的位置是在properties_table 数组中。
PHP的引用类型是比较特殊的一种类型,可以通过 & 操作符可以产生一个引用变量,假如把 $b = &a; $b 的值改变的时候,$a 的值也跟着改变。
struct _zend_reference {
zend_refcounted_h gc;
zval val;
};
$a = "time:" . time(); //$a -> zend_string_1(refcount=1)
$b = &$a; //$a,$b -> zend_reference_1(refcount=2) -> zend_string_1(refcount=1)
$c = $b; //$a,$b -> zend_reference_1(refcount=2) -> zend_string_1(refcount=2)
//$c -> zend_string_1(refcount=2)
中间结构体zend_reference_1存在的好处是,zend_string只需要存一份,减少空间的浪费以及申请空间带来的额外开销
比如数据总线有32位,它访存只能4个字节4个字节地进行。 0-3,4-7,8-11,12-15,…… 即使我们需要的数据只占一个字节,也是一次读取4个字节。 一个字节的数据不管地址是什么,都能通过一次访存读取出来。 而如果要读取的数据是一个字节以上,比如两个字节, 如果该数据的内存地址是0x03,则需要两次才能读取该数据, 第一次读0x00-0x03,第二次读0x04-0x07。 这个数据就跨越了访存边界。而相对CPU的运算来说,访存是非常慢的,所以要尽量减少访存次数。 为了减少跨越访存边界的数据引起的访存开销, 所以编译器会进行内存对齐,即把变量的地址做一些偏移, 目的是一次访存就读出数据,不然的话也要以尽可能少地访存次数读出数据。如上一个例子中那样,整型成员i的地址做4个字节的偏移, 而Sample对象的地址也会做4字节边界的对齐, 这样i的地址始终是4的倍数,从而使得i不跨越访存边界, 能一次读出它的值。
typedef struct{
char a;
char b;
int i;
} Sample1;
Sample1占多少空间呢?仍然是8个字节。 a在第0个字节,b在第1个字节,i占4-7字节。 这是内存对齐的原则,占用尽量少的内存。 如果在b之后,还有char类型的成员c和d,同样是占8个字节。 a,b,c,d在0-3字节。
标签:操作符 最大 分配 number 就是 内存对齐 长度 end sign
原文地址:https://www.cnblogs.com/jaychan/p/11261404.html