标签:构造 延迟 自定义类 incr row interrupt tab 策略 syn
阻塞队列(BlockingQueue)是指当队列满时,队列会阻塞插入元素的线程,直到队列不满;当队列空时,队列会阻塞获得元素的线程,直到队列变非空。阻塞队列就是生产者用来存放元素、消费者用来获取元素的容器。
当线程 插入/获取 动作由于队列 满/空 阻塞后,队列也提供了一些机制去处理,或抛出异常,或返回特殊值,或者线程一直等待...
方法/处理方式 | 抛出异常 | 返回特殊值 | 一直阻塞 | 超时退出 |
---|---|---|---|---|
插入方法 | add(e) | offer(e) | put(e) | offer(e, timeout, unit) |
移除方法 | remove(o) | poll() | take() | poll(timeout, unit) |
检查方法 | element() | peek() — 不移除元素 | 不可用 | 不可用 |
tips: 如果是无界阻塞队列,则 put 方法永远不会被阻塞;offer 方法始终返回 true。
Java 中的阻塞队列:
ArrayBlockingQueue 是一个用数组实现的有界阻塞队列。此队列按照先进先出(FIFO)的原则对元素进行排序,默认情况下不保证线程公平的访问。
通过可重入的独占锁 ReentrantLock 来控制并发,Condition 来实现阻塞。
public class ArrayBlockingQueueTest {
/**
* 1. 由于是有界阻塞队列,需要设置初始大小
* 2. 默认不保证阻塞线程的公平访问,可设置公平性
*/
private static ArrayBlockingQueue<String> QUEUE = new ArrayBlockingQueue<>(2, true);
public static void main(String[] args) throws InterruptedException {
Thread put = new Thread(() -> {
// 3. 尝试插入元素
try {
QUEUE.put("java");
QUEUE.put("javaScript");
// 4. 元素已满,会阻塞线程
QUEUE.put("c++");
} catch (InterruptedException e) {
e.printStackTrace();
}
});
put.start();
Thread take = new Thread(() -> {
try {
// 5. 获取一个元素
System.out.println(QUEUE.take());
} catch (InterruptedException e) {
e.printStackTrace();
}
});
take.start();
// 6 javaScript、c++
System.out.println(QUEUE.take());
System.out.println(QUEUE.take());
}
}
LinkedBlockingQueue 是一个用单向链表实现的有界阻塞队列。此队列的默认和最大长度为 Integer.MAX_VALUE。此队列按照先进先出的原则对元素进行排序。
和 ArrayBlockingQueue 一样,采用 ReentrantLock 来控制并发,不同的是它使用了两个独占锁来控制消费和生产,通过 takeLock 和 putLock 两个锁来控制生产和消费,互不干扰,只要队列未满,生产线程可以一直生产;只要队列不空,消费线程可以一直消费,不会相互因为独占锁而阻塞。
tips:因为使用了双锁,避免并发计算不准确,使用了一个 AtomicInteger 变量统计元素总量。
LinkedBlockingDeque 是一个由双向链表结构组成的有界阻塞队列,可以从队列的两端插入和移出元素。它实现了BlockingDeque接口,多了addFirst、addLast、offerFirst、offerLast、peekFirst和peekLast等方法,以 First 单词结尾的方法,表示插入、获取或移除双端队列的第一个元素。以 Last 单词结尾的方法,表示插入、获取或移除双端队列的最后一个元素。
LinkedBlockingDeque 的 Node 实现多了指向前一个节点的变量 prev,以此实现双向队列。并发控制上和 ArrayBlockingQueue 类似,采用单个 ReentrantLock 来控制并发。因为双端队列头尾都可以消费和生产,所以使用了一个共享锁。
双向阻塞队列可以运用在“工作窃取”模式中。
public class LinkedBlockingDequeTest {
private static LinkedBlockingDeque<String> DEQUE = new LinkedBlockingDeque<>(2);
public static void main(String[] args) {
DEQUE.addFirst("java");
DEQUE.addFirst("c++");
// java
System.out.println(DEQUE.peekLast());
// java
System.out.println(DEQUE.pollLast());
DEQUE.addLast("php");
// c++
System.out.println(DEQUE.pollFirst());
}
}
tips: take() 方法调用的是 takeFirst(),使用时候需注意。
PriorityBlockingQueue 是一个底层由数组实现的无界阻塞队列,并带有排序功能。由于是无界队列,所以插入永远不会被阻塞。默认情况下元素采取自然顺序升序排列。也可以自定义类实现 compareTo()方法来指定元素排序规则,或者初始化 PriorityBlockingQueue 时,指定构造参数 Comparator 来对元素进行排序。
底层同样采用 ReentrantLock 来控制并发,由于只有获取会阻塞,所以只采用一个Condition(只通知消费)来实现。
public class PriorityBlockingQueueTest {
private static PriorityBlockingQueue<String> QUEUE = new PriorityBlockingQueue<>();
public static void main(String[] args) {
QUEUE.add("java");
QUEUE.add("javaScript");
QUEUE.add("c++");
QUEUE.add("python");
QUEUE.add("php");
Iterator<String> it = QUEUE.iterator();
while (it.hasNext()) {
// c++ javaScript java python php
// 同优先级不保证排序顺序
System.out.print(it.next() + " ");
}
}
}
DelayQueue 是一个支持延时获取元素的无界阻塞队列。队列使用 PriorityQueue 来实现。队列中的元素必须实现 Delayed 接口,元素按延迟优先级排序,延迟时间短的排在前面,只有在延迟期满时才能从队列中提取元素。
和 PriorityBlockingQueue 相似,底层也是数组,采用一个 ReentrantLock 来控制并发。
应用场景:
public class DelayElement implements Delayed, Runnable {
private static final AtomicLong SEQUENCER = new AtomicLong();
/**
* 标识元素先后顺序
*/
private final long sequenceNumber;
/**
* 延迟时间,单位纳秒
*/
private long time;
public DelayElement(long time) {
this.time = System.nanoTime() + time;
this.sequenceNumber = SEQUENCER.getAndIncrement();
}
@Override
public long getDelay(TimeUnit unit) {
return unit.convert(time - System.nanoTime(), NANOSECONDS);
}
@Override
public int compareTo(Delayed other) {
// compare zero if same object
if (other == this) {
return 0;
}
if (other instanceof DelayElement) {
DelayElement x = (DelayElement) other;
long diff = time - x.time;
if (diff < 0) {
return -1;
} else if (diff > 0) {
return 1;
} else if (sequenceNumber < x.sequenceNumber) {
return -1;
} else {
return 1;
}
}
long diff = getDelay(NANOSECONDS) - other.getDelay(NANOSECONDS);
return (diff < 0) ? -1 : (diff > 0) ? 1 : 0;
}
@Override
public void run() {
System.out.println("sequenceNumber" + sequenceNumber);
}
@Override
public String toString() {
return "DelayElement{" + "sequenceNumber=" + sequenceNumber + ", time=" + time + '}';
}
}
public class DelayQueueTest {
private static DelayQueue<DelayElement> QUEUE = new DelayQueue<>();
public static void main(String[] args) {
// 1. 添加 10 个参数
for (int i = 1; i < 10; i++) {
// 2. 5 秒内随机延迟
int nextInt = new Random().nextInt(5);
long convert = TimeUnit.NANOSECONDS.convert(nextInt, TimeUnit.SECONDS);
QUEUE.offer(new DelayElement(convert));
}
// 3. 查询元素排序 —— 延迟短的排在前面
Iterator<DelayElement> iterator = QUEUE.iterator();
while (iterator.hasNext()) {
System.out.println(iterator.next());
}
// 4. 可观察到元素延迟输出
while (!QUEUE.isEmpty()) {
Thread thread = new Thread(QUEUE.poll());
thread.start();
}
}
}
LinkedTransferQueue是一个由链表结构组成的无界阻塞TransferQueue队列。
并发控制上采用了大量的 CAS 操作,没有使用锁。
相对于其他阻塞队列,LinkedTransferQueue 多了 tryTransfer 和 transfer 方法。
SynchronousQueue 是一个不存储元素的阻塞队列。每一个 put 操作必须等待一个 take 操作,否则继续 put 操作会被阻塞。
SynchronousQueue 默认情况下线程采用非公平性策略访问队列,未使用锁,全部通过 CAS 操作来实现并发,吞吐量非常高,高于 LinkedBlockingQueue 和 ArrayBlockingQueue,非常适合用来处理一些高效的传递性场景。Executors.newCachedThreadPool() 就使用了 SynchronousQueue 进行任务传递。
public class SynchronousQueueTest {
private static class SynchronousQueueProducer implements Runnable {
private BlockingQueue<String> blockingQueue;
private SynchronousQueueProducer(BlockingQueue<String> queue) {
this.blockingQueue = queue;
}
@Override
public void run() {
while (true) {
try {
String data = UUID.randomUUID().toString();
System.out.println(Thread.currentThread().getName() + " Put: " + data);
blockingQueue.put(data);
Thread.sleep(1000);
} catch (InterruptedException e) {
e.printStackTrace();
}
}
}
}
private static class SynchronousQueueConsumer implements Runnable {
private BlockingQueue<String> blockingQueue;
private SynchronousQueueConsumer(BlockingQueue<String> queue) {
this.blockingQueue = queue;
}
@Override
public void run() {
while (true) {
try {
System.out.println(Thread.currentThread().getName() + " take(): " + blockingQueue.take());
Thread.sleep(2000);
} catch (InterruptedException e) {
e.printStackTrace();
}
}
}
}
public static void main(String[] args) {
final BlockingQueue<String> synchronousQueue = new SynchronousQueue<>();
SynchronousQueueProducer queueProducer = new SynchronousQueueProducer(synchronousQueue);
new Thread(queueProducer, "producer - 1").start();
SynchronousQueueConsumer queueConsumer1 = new SynchronousQueueConsumer(synchronousQueue);
new Thread(queueConsumer1, "consumer — 1").start();
SynchronousQueueConsumer queueConsumer2 = new SynchronousQueueConsumer(synchronousQueue);
new Thread(queueConsumer2, "consumer — 2").start();
}
}
?
?
标签:构造 延迟 自定义类 incr row interrupt tab 策略 syn
原文地址:https://www.cnblogs.com/jmcui/p/11442616.html