标签:维数 ilo 构造 nes 目的 严格 -- 计算 name
包括两个数据结构:DataFrame和Series
官方文档地址:
pandas https://pandas.pydata.org/pandas-docs/stable/index.html
series https://pandas.pydata.org/pandas-docs/stable/reference/series.html
dataframe https://pandas.pydata.org/pandas-docs/stable/reference/frame.html
一、 Pandas简介
1、Python Data Analysis Library 或 pandas 是基于NumPy 的一种工具,该工具是为了解决数据分析任务而创建的。Pandas 纳入了大量库和一些标准的数据模型,提供了高效地操作大型数据集所需的工具。pandas提供了大量能使我们快速便捷地处理数据的函数和方法。你很快就会发现,它是使Python成为强大而高效的数据分析环境的重要因素之一。
2、Pandas是python的一个数据分析包,最初由AQR Capital Management于2008年4月开发,并于2009年底开源出来,目前由专注于Python数据包开发的PyData开发team继续开发和维护,属于PyData项目的一部分。Pandas最初被作为金融数据分析工具而开发出来,因此,pandas为时间序列分析提供了很好的支持。 Pandas的名称来自于面板数据(panel data)和python数据分析(data analysis)。panel data是经济学中关于多维数据集的一个术语,在Pandas中也提供了panel的数据类型。
转自:https://blog.csdn.net/qq_26591517/article/details/80041296
3、Pandas是Python的一个大数据处理模块。Pandas使用一个二维的数据结构DataFrame来表示表格式的数据,相比较于Numpy,Pandas可以存储混合的数据结构,同时使用NaN来表示缺失的数据,而不用像Numpy一样要手工处理缺失的数据,并且Pandas使用轴标签来表示行和列。
DataFrame类:
DataFrame有四个重要的属性:
index:行索引。
columns:列索引。
values:值的二维数组。
name:名字。
原文链接:https://blog.csdn.net/qq_26591517/article/details/80041296
4、pandas和numpy
pandas是python环境下最有名的数据统计包,而DataFrame翻译为数据框,是一种数据组织方式,这么说你可能无法从感性上认识它,举个例子,你大概用过Excel,而它也是一种数据组织和呈现的方式,简单说就是表格,而在在pandas中用DataFrame组织数据,如果你不print DataFrame,你看不到这些数据。
pandas和numpy的区别:
(1)numpy是数值计算的扩展包,panadas是做数据处理。
(2)NumPy简介:N维数组容器NumPy系统是Python的一种开源的数值计算扩展。这种工具可用来存储和处理大型矩阵,比Python自身的嵌套列表(nested list structure)结构要高效的多(该结构也可以用来表示矩阵(matrix))。据说NumPy将Python相当于变成一种免费的更强大的MatLab系统 。
Pandas简介:表格容器 pandas 是基于NumPy 的一种工具,该工具是为了解决数据分析任务而创建的。Pandas 纳入了大量库和一些标准的数据模型,提供了高效地操作大型数据集所需的工具。pandas提供了大量快速便捷地处理数据的函数和方法。使Python成为强大而高效的数据分析环境的重要因素之一。
参考:https://blog.csdn.net/yang9520/article/details/79847964
二、Series和DataFrame
pandas 是基于 Numpy 构建的含有更高级数据结构和工具的数据分析包。
类似于 Numpy 的核心是 ndarray,pandas 也是围绕着 Series 和 DataFrame 两个核心数据结构展开的 。Series 和 DataFrame 分别对应于一维的序列和二维的表结构。pandas 约定俗成的导入方法如下:
Series:
Series 对象包含两个主要的属性:index 和 values,分别为上例中左右两列。
Series 对象的元素会严格依照给出的 index 构建,这意味着:如果 data 参数是有键值对的,那么只有 index 中含有的键会被使用;以及如果 data 中缺少响应的键,即使给出 NaN 值,这个键也会被添加。
DataFrame:
DataFrame 是一个表格型的数据结构,它含有一组有序的列(类似于 index),每列可以是不同的值类型(不像 ndarray 只能有一个 dtype)。基本上可以把 DataFrame 看成是共享同一个 index 的 Series 的集合。
DataFrame 的构造方法与 Series 类似,只不过可以同时接受多条一维数据源,每一条都会成为单独的一列:
DataFrame.loc([行名称],[列名称])
DataFrame.iloc([行号],[列号])
https://blog.csdn.net/llx1026/article/details/77722608
参考:https://blog.csdn.net/qq_34941023/article/details/53317805
三、总结图
参考:https://www.jianshu.com/p/1b751406a7b6
标签:维数 ilo 构造 nes 目的 严格 -- 计算 name
原文地址:https://www.cnblogs.com/ironan-liu/p/11459159.html