码迷,mamicode.com
首页 > 编程语言 > 详细

使用二阶微分锐化图像(拉普拉斯算子)基本原理及Python实现

时间:2019-09-06 22:47:14      阅读:406      评论:0      收藏:0      [点我收藏+]

标签:return   lte   image   shape   color   简介   turn   突变   margin   

1. 拉普拉斯算子

1.1 简介

一种典型的各向同性的微分算子,可用于检测图像中灰度图片的区域

$$ \nabla^{2} f=\frac{\partial^{2} f}{\partial x^{2}}+\frac{\partial^{2} f}{\partial y^{2}} $$

根据上述的差分近似可以推导出

$$ \nabla^{2} f(x, y)=f(x+1, y)+f(x-1, y)+f(x, y+1)+f(x, y-1)-4 f(x, y) $$

1.2 锐化过程

  1. 使用拉普拉斯过滤器得到图像中灰度突变的区域$\nabla^{2} f(x, y)$
  2. 使用原图像加上$\nabla^{2} f(x, y)$,如下

$$ g(x, y)=f(x, y)+c\left[\nabla^{2} f(x, y)\right] $$

  • 其中c为可变参数

2. 测试技术图片

 图源自skimage

3. 代码

 1 import numpy as np
 2 
3
4 def laplace_sharpen(input_image, c): 5 ‘‘‘ 6 拉普拉斯锐化 7 :param input_image: 输入图像 8 :param c: 锐化系数 9 :return: 输出图像 10 ‘‘‘ 11 input_image_cp = np.copy(input_image) # 输入图像的副本 12 13 # 拉普拉斯滤波器 14 laplace_filter = np.array([ 15 [1, 1, 1], 16 [1, -8, 1], 17 [1, 1, 1], 18 ]) 19 20 input_image_cp = np.pad(input_image_cp, (1, 1), mode=constant, constant_values=0) # 填充输入图像 21 22 m, n = input_image_cp.shape # 填充后的输入图像的尺寸 23 24 output_image = np.copy(input_image_cp) # 输出图像 25 26 for i in range(1, m - 1): 27 for j in range(1, n - 1): 28 R = np.sum(laplace_filter * input_image_cp[i - 1:i + 2, j - 1:j + 2]) # 拉普拉斯滤波器响应 29 30 output_image[i, j] = input_image_cp[i, j] + c * R 31 32 output_image = output_image[1:m - 1, 1:n - 1] # 裁剪 33 34 return output_image

 

使用二阶微分锐化图像(拉普拉斯算子)基本原理及Python实现

标签:return   lte   image   shape   color   简介   turn   突变   margin   

原文地址:https://www.cnblogs.com/iwuqing/p/11478583.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!