标签:display 一致性 odi 接下来 时间片 存在 code 内存数据 四种
目录:
1.重排序场景
2.追根溯源
3.缓存一致性协议
4.重排序原因
一、重排序场景
class ResortDemo { int a = 0; boolean flag = false; public void writer() { a = 1; //1 flag = true; //2 } Public void reader() { if (flag) { //3 int i = a * a; //4 …… } } }
当两个线程 A 和 B,A 首先执行writer() 方法,随后 B 线程接着执行 reader() 方法。线程B在执行操作4时,能否看到线程 A 在操作1对共享变量 a 的写入?
答案是:不一定能看到。
由于操作1和操作2没有数据依赖关系,编译器和处理器可以对这两个操作重排序;同样,操作3和操作4没有数据依赖关系,编译器和处理器也可以对这两个操作重排序。
二、追根溯源
三、缓存一致性协议
四、重排序原因
基于上图中的原因,CPU又引入了storeBuffers的缓冲区。CPU0 只需要在写入共享数据时,直接把数据写入到 storebufferes 中,同时发送 invalidate 消息,然后继续去处理其
这个时候,我们再来看上述标题一中的重排序场景。
class ResortDemo { int a = 0; boolean flag = false; public void writer() { a = 1; //1 flag = true; //2 } Public void reader() { if (flag) { //3 int i = a * a; //4 …… } } }
当执行1操作时,a的状态从S->M,此时,线程A会先把变更写入到storebuffers,然后发送invalidate去异步通知其他CPU线程,紧接着就执行了下面的2操作。
此时,可能1的变更还在storebuffers中,并未提交到主内存。什么时候会提交到主内存,也不确定。
所以,线程B调用read方法可能会出现,看到了flag的变更,但是看不到a的变更,就出现了重排序的现象。
标签:display 一致性 odi 接下来 时间片 存在 code 内存数据 四种
原文地址:https://www.cnblogs.com/ningJJ/p/11479145.html