标签:路径 就是 广度优先搜索 广度 添加节点 最好 深度 poll set
深度优先遍历与广度优先遍历其实是属于图算法的一种,多级树可以看做是一种特殊的图,所以多级数的深/广遍历直接套用图结构的遍历方法即可。
工程中后端通常会用多级树来存储页面表单的各级联动类目,本文提供了深度遍历与广度遍历的示例,在使用时只要根据你的业务需求稍加改动即可。
我们知道,遍历有递归,非递归两种方式。在工程项目上,一般是禁用递归方式的,因为递归非常容易使得系统爆栈。同时,JVM也限制了最大递归数量,在你的树结构非常深的时候很容易出现StackOverflowError异常,所以最好采用非递归的方式。
public class Node {
//值
public int value;
//所有的子节点
public ArrayList<Node> nexts;
public Node(int value) {
this.value = value;
}
}
深度优先搜索英文缩写为DFS即Depth First Search.其过程简要来说是对每一个可能的分支路径深入到不能再深入为止,而且每个节点只能访问一次。多级树可以看做一个特殊的图结构,总的来说遍历的方法还是不变的,都是利用栈和Set来进行操作。
主要步骤:
public static void dfs(Node node) {
if (node == null) {
return;
}
Stack<Node> stack = new Stack<>();
HashSet<Node> set = new HashSet<>();
stack.add(node);
set.add(node);
System.out.println(node.value);
while (!stack.isEmpty()) {
//弹栈获得一个节点
Node cur = stack.pop();
//查看这个节点的所有孩子
for (Node next : cur.nexts) {
//如果有孩子是之前没有遍历到的,说明这个节点没有深度遍历完
if (!set.contains(next)) {
//此节点与其孩子加入栈与Set中
stack.push(cur);
stack.push(next);
set.add(next);
System.out.println(next.value);
break;
}
}
}
}
宽度优先搜索算法(又称广度优先搜索)是最简便的图的搜索算法之一,这一算法也是很多重要的图的算法的原型。对于多级数来说,就是先遍历该节点的所有孩子,然后在遍历孩子节点的所有孩子,先遍历一层再遍历下一次层。
主要思路就是利用队列来将下一层的所有节点记录下来,然后顺序遍历就可以了。
public static void bfs(Node node) {
if (node == null) {
return;
}
Queue<Node> queue = new LinkedList<>();
//用来注册已加入队列的节点——>防止重复添加节点
HashSet<Node> set = new HashSet<>();
queue.add(node);
set.add(node);
while (!queue.isEmpty()) {
Node cur = queue.poll();
System.out.println(cur.value);
//将节点的所有下游节点加入到队列
for (Node next : cur.nexts) {
if (!set.contains(next)) {
set.add(next);
queue.add(next);
}
}
}
}
标签:路径 就是 广度优先搜索 广度 添加节点 最好 深度 poll set
原文地址:https://www.cnblogs.com/keeya/p/11487465.html