标签:print ios 单位 amp stream tar 结束时间 def 频率
#include<stdio.h>
#include<time.h> //用到clock()函数
int main() {
int begintime,endtime;
int i = 0;
int a[1002];
begintime=clock(); //计时开始
/*
代码块
*/
endtime = clock(); //计时结束
printf("\n\nRunning Time:%dms\n", endtime-begintime);
return 0;
}
#include<stdio.h>
#include <windows.h>
int main() {
int a[10002];
int i = 0;
double run_time;
_LARGE_INTEGER time_start; //开始时间
_LARGE_INTEGER time_over; //结束时间
double dqFreq; //计时器频率
LARGE_INTEGER f; //计时器频率
QueryPerformanceFrequency(&f);
dqFreq=(double)f.QuadPart;
QueryPerformanceCounter(&time_start); //计时开始
/*
代码句
*/
QueryPerformanceCounter(&time_over); //计时结束
run_time=1000000*(time_over.QuadPart-time_start.QuadPart)/dqFreq;
//乘以1000000把单位由秒化为微秒,精度为1000 000/(cpu主频)微秒
printf("\nrun_time:%fus\n",run_time);
return 0;
}
采用的方式是简单的y++
时间复杂度为O(n)
执行9次操作
#include<stdio.h>
#include <iostream>
#include <windows.h>
#define ll long long
using namespace std;
int main() {
ll x=1000;
for(int i=1;i<10;i++){
double run_time;
LARGE_INTEGER time_start; //开始时间
LARGE_INTEGER time_over; //结束时间
double dqFreq; //计时器频率
LARGE_INTEGER f; //计时器频率
QueryPerformanceFrequency(&f);
dqFreq=(double)f.QuadPart;
QueryPerformanceCounter(&time_start); //计时开始
//开始操作
ll y=0;
for(ll j=1;j<=x;j++){
y++;
}
x*=10;
//结束操作
QueryPerformanceCounter(&time_over); //计时结束
run_time=1000000*(time_over.QuadPart-time_start.QuadPart)/dqFreq;
//乘以1000000把单位由秒化为微秒,精度为1000 000/(cpu主频)微秒
printf("\nrun_time:%fus\n",run_time);
}
return 0;
}
最后输出的是
run_time:1.924813us
run_time:19.248130us
run_time:192.802098us
run_time:1950.156327us
run_time:18903.267242us
run_time:179787.474985us
run_time:1795408.102051us
run_time:18517596.319244us
run_time:186273317.344554us
明显地发现,呈现着线性的关系,n增大10倍后,时间也是增大10倍,所以时间复杂度可以用O(n)线性表示
标签:print ios 单位 amp stream tar 结束时间 def 频率
原文地址:https://www.cnblogs.com/Emcikem/p/11518388.html