标签:rand limit float stand with err generator nal ever
洗牌算法的python实现
import random
lst = list(range(10))
for i in reversed(range(len(lst))):
j = random.randint(0,i)
lst[i],lst[j] = lst[j],lst[i]
print(lst)
python中的random.shuffle中就用到了洗牌算法,这里贴出源码
def shuffle(self, x, random=None):
"""Shuffle list x in place, and return None.
Optional argument random is a 0-argument function returning a
random float in [0.0, 1.0); if it is the default None, the
standard random.random will be used.
"""
if random is None:
randbelow = self._randbelow
for i in reversed(range(1, len(x))):
# pick an element in x[:i+1] with which to exchange x[i]
j = randbelow(i+1)
x[i], x[j] = x[j], x[i]
else:
_int = int
for i in reversed(range(1, len(x))):
# pick an element in x[:i+1] with which to exchange x[i]
j = _int(random() * (i+1))
x[i], x[j] = x[j], x[i]
def _randbelow(self, n, int=int, maxsize=1<<BPF, type=type,Method=_MethodType,BuiltinMethod=_BuiltinMethodType):
"Return a random int in the range [0,n). Raises ValueError if n==0."
random = self.random
getrandbits = self.getrandbits
# Only call self.getrandbits if the original random() builtin method
# has not been overridden or if a new getrandbits() was supplied.
if type(random) is BuiltinMethod or type(getrandbits) is Method:
k = n.bit_length() # don't use (n-1) here because n can be 1
r = getrandbits(k) # 0 <= r < 2**k
while r >= n:
r = getrandbits(k)
return r
# There's an overridden random() method but no new getrandbits() method,
# so we can only use random() from here.
if n >= maxsize:
_warn("Underlying random() generator does not supply \n"
"enough bits to choose from a population range this large.\n"
"To remove the range limitation, add a getrandbits() method.")
return int(random() * n)
if n == 0:
raise ValueError("Boundary cannot be zero")
rem = maxsize % n
limit = (maxsize - rem) / maxsize # int(limit * maxsize) % n == 0
r = random()
while r >= limit:
r = random()
return int(r*maxsize) % n
标签:rand limit float stand with err generator nal ever
原文地址:https://www.cnblogs.com/Yongzyw/p/11520238.html