码迷,mamicode.com
首页 > 编程语言 > 详细

Java高并发网络编程(三)NIO

时间:2019-09-15 19:58:42      阅读:141      评论:0      收藏:0      [点我收藏+]

标签:%s   art   轮询   output   实现网络   关注   ima   技术   buffer缓冲区   

从Java 1.4开始,Java提供了新的非阻塞IO操作API,用意是替代Java IO和Java Networking相关的API。

NIO中有三个核心组件:

  • Buffer缓冲区
  • Channel通道
  • Selector选择器

一、Buffer缓冲区

缓冲区本质上是一个可以写入数据的内存块(类似数组),然后可以再次读取。此内存块包含在NIO Buffer对象中,该对象提供了一组方法,可以更轻松地使用内存块。

相比较直接对数组的操作,BufferAPI更容易操作和管理。

 

使用Buffer进行数据写入与读取的四个步骤

  • 将数据写入缓冲区
  • 调用buffer.flip(),转换为读取模式
  • 缓冲区读取数据
  • 调用buffer.clear()或buffer.compact()清除缓冲区

 

Buffer工作原理

Buffer三个重要属性:

capacity容量:作为一个内存块,Buffer具有一定的固定大小,称为“容量”。

position位置:写入模式时代表写数据的位置。读取模式时代表读取数据的位置。

limit限制:写入模式,限制等于buffer的容量。读取模式下,limit等于写入的数据量。

技术图片技术图片

 

 Buffer的API

一个示例

public class BufferDemo {

    public static void main(String[] args) {
        // 构建一个byte字节缓冲区,容量是4
        ByteBuffer byteBuffer = ByteBuffer.allocate(4);
        // 默认写入模式,查看三个重要的指标
        System.out.println(String.format("初始化:capacity容量:%s, position位置:%s, limit限制:%s", byteBuffer.capacity(),
                byteBuffer.position(), byteBuffer.limit()));
        // 写入3字节的数据
        byteBuffer.put((byte) 1);
        byteBuffer.put((byte) 2);
        byteBuffer.put((byte) 3);
        // 再看数据
        System.out.println(String.format("写入3字节后,capacity容量:%s, position位置:%s, limit限制:%s", byteBuffer.capacity(),
                byteBuffer.position(), byteBuffer.limit()));

        // 转换为读取模式(不调用flip方法,也是可以读取数据的,但是position记录读取的位置不对)
        System.out.println("#######开始读取");
        byteBuffer.flip();
        byte a = byteBuffer.get();
        System.out.println(a);
        byte b = byteBuffer.get();
        System.out.println(b);
        System.out.println(String.format("读取2字节数据后,capacity容量:%s, position位置:%s, limit限制:%s", byteBuffer.capacity(),
                byteBuffer.position(), byteBuffer.limit()));

        // 继续写入3字节,此时读模式下,limit=3,position=2.继续写入只能覆盖写入一条数据
        // clear()方法清除整个缓冲区。compact()方法仅清除已阅读的数据。转为写入模式
        byteBuffer.compact(); // buffer内部还残留1个数据,还可以写3个数据
        byteBuffer.put((byte) 3);
        byteBuffer.put((byte) 4);
        byteBuffer.put((byte) 5);
        System.out.println(String.format("最终的情况,capacity容量:%s, position位置:%s, limit限制:%s", byteBuffer.capacity(),
                byteBuffer.position(), byteBuffer.limit()));

        // rewind() 重置position为0
        // mark() 标记position的位置
        // reset() 重置position为上次mark()标记的位置

    }
}

打印的结果:

初始化:capacity容量:4, position位置:0, limit限制:4

写入3字节后,capacity容量:4, position位置:3, limit限制:4

#######开始读取

1

2

读取2字节数据后,capacity容量:4, position位置:2, limit限制:3

最终的情况,capacity容量:4, position位置:4, limit限制:4

 

 从上面可知,与数组相比,数组写入或读取的时候,写到哪,读到哪,我们是不知道的,而buffer则可以方便的知道

 

ByteBuffer内存类型

ByteBuffer为性能关键型代码提供了直接内存(direct堆外)和非直接内存(heap堆)两种实现。

堆外内存获取的方式:ByteBuffer directByteBuffer=ByteBuffer.allocateDirect(noBytes);

堆内内存生成的是数组

堆外内存的好处

  • 进行网络IO或者文件IO时比heapBuffer少拷贝一次。(file/socket---OS memory---jvm heap)GC会移动对象内存,在写file或socket的过程中,JVM的实现中,会先把数据复制到堆外,再进行写入。
    • 文件或网络读写的时候,比如java要写一个a,这个a有内存地址1,调用操作系统的api进行写入,写入的过程中把内存地址传递过去,java在操作此写入过程时,会先把数据从堆内存中复制一份到堆外去,复制到内存地址z,再进行写入。因为java中的垃圾回收机制,会移动对象内存,经过这么移动之后,堆内的a的地址很可能就发生了变化,变为地址2,这时候去地址1找a是找不到的。所以为了防止GC的这种后果,在JVM中会先复制一份到堆外。
    • 因此,如果我们直接使用堆外内存,一开始就在堆外申请内存,就会少一次拷贝的过程。因为堆外内存不受GC的管理。GC不管理,堆外内存依然可以回收,下一条正好说的是这件事。
  • GC范围之外,降低GC压力,但实现了自动管理。DirectByteBuffer中有一个Cleaner对象(PhantomReference,虚引用),Cleaner被GC前会执行clean方法,触发DirectByteBuffer中定义的回收函数Deallocator,清除堆外内存对象所管理的区域。DirectByteBuffer这个对象是受GC管理的,只是申请的内存不管理而已,定义了个方法,在回收DirectByteBuffer对象的时候,触发回收内存的函数。

建议:

  • 性能确实可观的时候才去使用;分配给大型、长寿命;(网络传输、文件读写场景)
  • 通过虚拟机参数MaxDirectMemorySize限制大小,防止耗尽整个机器的内存。堆之外的内存不受GC管理,很多监控工具没法监控。

修改上面代码,堆外缓冲区的写法:

public class DirectBufferDemo {

    public static void main(String[] args) {
        // 构建一个byte字节缓冲区,容量是4
        ByteBuffer byteBuffer = ByteBuffer.allocateDirect(4);
        // 默认写入模式,查看三个重要的指标
        System.out.println(String.format("初始化:capacity容量:%s, position位置:%s, limit限制:%s", byteBuffer.capacity(),
                byteBuffer.position(), byteBuffer.limit()));
        // 写入2字节的数据
        byteBuffer.put((byte) 1);
        byteBuffer.put((byte) 2);
        byteBuffer.put((byte) 3);
        // 再看数据
        System.out.println(String.format("写入3字节后,capacity容量:%s, position位置:%s, limit限制:%s", byteBuffer.capacity(),
                byteBuffer.position(), byteBuffer.limit()));

        // 转换为读取模式(不调用flip方法,也是可以读取数据的,但是position记录读取的位置不对)
        System.out.println("#######开始读取");
        byteBuffer.flip();
        byte a = byteBuffer.get();
        System.out.println(a);
        byte b = byteBuffer.get();
        System.out.println(b);
        System.out.println(String.format("读取2字节数据后,capacity容量:%s, position位置:%s, limit限制:%s", byteBuffer.capacity(),
                byteBuffer.position(), byteBuffer.limit()));

        // 继续写入3字节,此时读模式下,limit=3,position=2.继续写入只能覆盖写入一条数据
        // clear()方法清除整个缓冲区。compact()方法仅清除已阅读的数据。转为写入模式
        byteBuffer.compact();
        byteBuffer.put((byte) 3);
        byteBuffer.put((byte) 4);
        byteBuffer.put((byte) 5);
        System.out.println(String.format("最终的情况,capacity容量:%s, position位置:%s, limit限制:%s", byteBuffer.capacity(),
                byteBuffer.position(), byteBuffer.limit()));
        byteBuffer.array();
        // rewind() 重置position为0
        // mark() 标记position的位置
        // reset() 重置position为上次mark()标记的位置
    }
}

 

二、Channel通道

Buffer是给通道用的

技术图片

上面是BIO,网络操作通过outputStream和inputStream两个对象来实现的,即Socket和IO的API组合使用,来实现网络数据的交互。需要io包和net包。

技术图片

 而在NIO中,提供了新的API,只需要使用nio包。

提供了channel,channel的API包含了UDP/TCP网络相关的操作和文件IO操作

channel可以同时建立网络连接并传输数据,BIO中需要socket和stream两组API,NIO合二为一

channel:

  • FileChannel
  • DataGramChannel
  • SocketChannel
  • ServerSocketChannel

和标准IO Stream操作的区别:

  • 在一个通道内进行读取和写入,而stream通常是单向的(input或output)
  • 可以非阻塞读取和写入通道,通道始终读取或写入缓冲区

 

下面介绍API

1.SocketChannel

SocketChannel拥有建立TCP网络连接,类似java.net.Socket。有两种创建socketChannel的形式:

  • 客户端的。客户端主动发起和服务器的连接
  • 服务端的。服务端获取的新连接
 // 客户端主动发起连接的方式
        SocketChannel socketChannel = SocketChannel.open();
        socketChannel.configureBlocking(false); // 设置为非阻塞模式
        socketChannel.connect(new InetSocketAddress("http://163.com", 80));
        socketChannel.write(buffer); // 发送请求数据-向通道写入数据
        int bytesRead = socketChannel.read(buffer); // 读取服务端返回-读取缓存区的数据
        socketChannel.close(); // 关闭连接

channel里传入的是Buffer

write写:write()在尚未写入任何内容时就可能返回了。需要在循环中调用write()

read读:read()方法可能直接返回而根本不读取任何数据,根据返回的int值判断读取了多少字节。

 

2.ServerSocketChannel

可以建通新建的TCP连接通道,类似ServerSocket。

// 创建网络服务端
ServerSocketChannel serverSocketChannel = ServerSocketChannel.open();
serverSocketChannel.configureBlocking(false); // 设置为非阻塞模式
serverSocketChannel.socket().bind(new InetSocketAddress(8080)); // 绑定端口
while (true) {
    SocketChannel socketChannel = serverSocketChannel.accept(); // 获取新tcp连接通道
    if (socketChannl != null) {
        // tcp请求 读取/响应
    }
}

serverSocketChannel.accept():如果该通道处于非阻塞模式,那么如果没有挂起的连接,该方法将立即返回null。必须检查返回的SocketChannel是否为null。

 

server

/**
 * 直接基于非阻塞的写法
 */
public class NIOServer {

    public static void main(String[] args) throws Exception {
        // 创建网络服务端
        ServerSocketChannel serverSocketChannel = ServerSocketChannel.open();
        serverSocketChannel.configureBlocking(false); // 设置为非阻塞模式
        serverSocketChannel.socket().bind(new InetSocketAddress(8080)); // 绑定端口
        System.out.println("启动成功");
        while (true) {
            SocketChannel socketChannel = serverSocketChannel.accept(); // 获取新tcp连接通道
            // tcp请求 读取/响应
            if (socketChannel != null) {
                System.out.println("收到新连接 : " + socketChannel.getRemoteAddress());
                socketChannel.configureBlocking(false); // 默认是阻塞的,一定要设置为非阻塞
                try {
                    ByteBuffer requestBuffer = ByteBuffer.allocate(1024);
                    while (socketChannel.isOpen() && socketChannel.read(requestBuffer) != -1) {
                        // 长连接情况下,需要手动判断数据有没有读取结束 (此处做一个简单的判断: 超过0字节就认为请求结束了)
                        if (requestBuffer.position() > 0)
                            break;
                    }
                    if (requestBuffer.position() == 0)
                        continue; // 如果没数据了, 则不继续后面的处理
                    requestBuffer.flip();
                    byte[] content = new byte[requestBuffer.limit()];
                    requestBuffer.get(content);
                    System.out.println(new String(content));
                    System.out.println("收到数据,来自:" + socketChannel.getRemoteAddress());

                    // 响应结果 200
                    String response = "HTTP/1.1 200 OK\r\n" + "Content-Length: 11\r\n\r\n" + "Hello World";
                    ByteBuffer buffer = ByteBuffer.wrap(response.getBytes());
                    while (buffer.hasRemaining()) {
                        socketChannel.write(buffer);// 非阻塞
                    }
                } catch (IOException e) {
                    e.printStackTrace();
                }
            }
        }
        // 用到了非阻塞的API, 在设计上,和BIO可以有很大的不同.继续改进
    }
}

client

public class NIOClient {

    public static void main(String[] args) throws Exception {
        SocketChannel socketChannel = SocketChannel.open();
        socketChannel.configureBlocking(false);
        socketChannel.connect(new InetSocketAddress("127.0.0.1", 8080));
        while (!socketChannel.finishConnect()) {
            // 没连接上,则一直等待
            Thread.yield();
        }
        Scanner scanner = new Scanner(System.in);
        System.out.println("请输入:");
        // 发送内容
        String msg = scanner.nextLine();
        ByteBuffer buffer = ByteBuffer.wrap(msg.getBytes());
        while (buffer.hasRemaining()) {
            socketChannel.write(buffer);
        }
        // 读取响应
        System.out.println("收到服务端响应:");
        ByteBuffer requestBuffer = ByteBuffer.allocate(1024);

        while (socketChannel.isOpen() && socketChannel.read(requestBuffer) != -1) {
            // 长连接情况下,需要手动判断数据有没有读取结束 (此处做一个简单的判断: 超过0字节就认为请求结束了)
            if (requestBuffer.position() > 0)
                break;
        }
        requestBuffer.flip();
        byte[] content = new byte[requestBuffer.limit()];
        requestBuffer.get(content);
        System.out.println(new String(content));
        scanner.close();
        socketChannel.close();
    }

}

启动两个客户端,只能收到一个新连接

技术图片

由于server使用while循环不断判断,只有第一个客户端输入后,才能与第二个客户端建立连接,和之前BIO出现了一样的现象,当然BIO那里是因为阻塞,这里是因为while

技术图片

 

改进

BIO当时通过多线程进行解决的,我们这里是非阻塞的,没必要使用多线程

升级一

/**
 * 直接基于非阻塞的写法,一个线程处理轮询所有请求
 */
public class NIOServer1 {

    /**
     * 已经建立连接的集合
     */
    private static ArrayList<SocketChannel> channels = new ArrayList<>();

    public static void main(String[] args) throws Exception {
        // 创建网络服务端
        ServerSocketChannel serverSocketChannel = ServerSocketChannel.open();
        serverSocketChannel.configureBlocking(false); // 设置为非阻塞模式
        serverSocketChannel.socket().bind(new InetSocketAddress(8080)); // 绑定端口
        System.out.println("启动成功");
        while (true) {
            SocketChannel socketChannel = serverSocketChannel.accept(); // 获取新tcp连接通道
            // tcp请求 读取/响应
            if (socketChannel != null) {
                System.out.println("收到新连接 : " + socketChannel.getRemoteAddress());
                socketChannel.configureBlocking(false); // 默认是阻塞的,一定要设置为非阻塞
                channels.add(socketChannel);
            } else {
                // 没有新连接的情况下,就去处理现有连接的数据,处理完的就删除掉
                Iterator<SocketChannel> iterator = channels.iterator();
                while (iterator.hasNext()) {
                    SocketChannel ch = iterator.next();
                    try {
                        ByteBuffer requestBuffer = ByteBuffer.allocate(1024);
                        // 如果通道里没有数据,就没必要再继续下面的循环读取了
                        if (ch.read(requestBuffer) == 0) {
                            // 等于0,代表这个通道没有数据需要处理,那就待会再处理
                            continue;
                        }
                        while (ch.isOpen() && ch.read(requestBuffer) != -1) {
                            // 长连接情况下,需要手动判断数据有没有读取结束 (此处做一个简单的判断: 超过0字节就认为请求结束了)
                            if (requestBuffer.position() > 0)
                                break;
                        }
                        if (requestBuffer.position() == 0)
                            continue; // 如果没数据了, 则不继续后面的处理
                        requestBuffer.flip();
                        byte[] content = new byte[requestBuffer.limit()];
                        requestBuffer.get(content);
                        System.out.println(new String(content));
                        System.out.println("收到数据,来自:" + ch.getRemoteAddress());

                        // 响应结果 200
                        String response = "HTTP/1.1 200 OK\r\n" + "Content-Length: 11\r\n\r\n" + "Hello World";
                        ByteBuffer buffer = ByteBuffer.wrap(response.getBytes());
                        while (buffer.hasRemaining()) {
                            ch.write(buffer);
                        }
                        iterator.remove();
                    } catch (IOException e) {
                        e.printStackTrace();
                        iterator.remove();
                    }
                }
            }
        }
        // 用到了非阻塞的API, 再设计上,和BIO可以有很大的不同
        // 问题: 轮询通道的方式,低效,浪费CPU
    }
}

 

三、Selector

循环检查不高效, NIO提供了更好的方法。

Selector是一个Java NIO组件,可以检查一个或多个NIO通道,并确定哪些通道已经准备好进行读取或写入。实现单个线程可以管理多个通道,从而管理多个网络连接。

技术图片

 

 实现一个线程处理多个通道的核心概念理解:事件驱动机制。

不是监听channel

非阻塞的网络通道下,开发者通过Selector注册对于通道感兴趣的事件类型,线程通过监听事件来触发相应的代码执行,比如accept、read、write等事件。(拓展:更底层是操作系统的多路复用机制)

技术图片

 

 改进二

/**
 * 结合Selector实现的非阻塞服务端(放弃对channel的轮询,借助消息通知机制)
 */
public class NIOServer2 {

    public static void main(String[] args) throws Exception {
        // 1. 创建网络服务端ServerSocketChannel
        ServerSocketChannel serverSocketChannel = ServerSocketChannel.open();
        serverSocketChannel.configureBlocking(false); // 设置为非阻塞模式

        // 2. 构建一个Selector选择器,并且将channel注册上去
        Selector selector = Selector.open();
        SelectionKey selectionKey = serverSocketChannel.register(selector, 0, serverSocketChannel);// 将serverSocketChannel注册到selector
        selectionKey.interestOps(SelectionKey.OP_ACCEPT); // 对serverSocketChannel上面的accept事件感兴趣(serverSocketChannel只能支持accept操作)

        // 3. 绑定端口
        serverSocketChannel.socket().bind(new InetSocketAddress(8080));

        System.out.println("启动成功");

        while (true) {
            // 不再轮询通道,改用下面轮询事件的方式.select方法有阻塞效果,直到有事件通知才会有返回
            selector.select();
            // 获取事件
            Set<SelectionKey> selectionKeys = selector.selectedKeys();
            // 遍历查询结果e
            Iterator<SelectionKey> iter = selectionKeys.iterator();
            while (iter.hasNext()) {
                // 被封装的查询结果
                SelectionKey key = iter.next();
                iter.remove();
                // 关注 Read 和 Accept两个事件
                if (key.isAcceptable()) {
                    ServerSocketChannel server = (ServerSocketChannel) key.attachment();
                    // 将拿到的客户端连接通道,注册到selector上面
                    SocketChannel clientSocketChannel = server.accept(); // mainReactor 轮询accept
                    clientSocketChannel.configureBlocking(false);
                    clientSocketChannel.register(selector, SelectionKey.OP_READ, clientSocketChannel);
                    System.out.println("收到新连接 : " + clientSocketChannel.getRemoteAddress());
                }

                if (key.isReadable()) {
                    SocketChannel socketChannel = (SocketChannel) key.attachment();
                    try {
                        ByteBuffer requestBuffer = ByteBuffer.allocate(1024);
                        while (socketChannel.isOpen() && socketChannel.read(requestBuffer) != -1) {
                            // 长连接情况下,需要手动判断数据有没有读取结束 (此处做一个简单的判断: 超过0字节就认为请求结束了)
                            if (requestBuffer.position() > 0) break;
                        }
                        if(requestBuffer.position() == 0) continue; // 如果没数据了, 则不继续后面的处理
                        requestBuffer.flip();
                        byte[] content = new byte[requestBuffer.limit()];
                        requestBuffer.get(content);
                        System.out.println(new String(content));
                        System.out.println("收到数据,来自:" + socketChannel.getRemoteAddress());
                        // TODO 业务操作 数据库 接口调用等等

                        // 响应结果 200
                        String response = "HTTP/1.1 200 OK\r\n" +
                                "Content-Length: 11\r\n\r\n" +
                                "Hello World";
                        ByteBuffer buffer = ByteBuffer.wrap(response.getBytes());
                        while (buffer.hasRemaining()) {
                            socketChannel.write(buffer);
                        }
                    } catch (IOException e) {
                        // e.printStackTrace();
                        key.cancel(); // 取消事件订阅
                    }
                }
            }
            selector.selectNow();
        }
        // 问题: 此处一个selector监听所有事件,一个线程处理所有请求事件. 会成为瓶颈! 要有多线程的运用
    }
}

 

 

NIO对比BIO

技术图片

 

 

技术图片

 

 

如果程序需要支撑大量的连接,使用NIO是最好的方式。

Tomcat8中,已经完全移除了BIO相关的网络处理代码,默认采用NIO进行网络处理。

 

四、NIO与多线程结合的改进方案

上述的NIO是单线程的,会有性能瓶颈,且无法利用多核的优势。

技术图片

 

 左:线程池,单Reactor。两种线程,一是Reactor线程,负责网络数据的接收和网络连接的处理。接收的数据进行什么处理,由单独的线程池进行处理。将底层的基础网络处理和应用层的逻辑处理进行了分离,两种线程进行处理。

右:多Reactor。将Reactor分为多种,处理网络连接的有mainReactor去做,处理数据读取由另外的subReactor做,其他和单Reactor相同。

/**
 * NIO selector 多路复用reactor线程模型
 */
public class NIOServerV3 {
    /** 处理业务操作的线程 */
    private static ExecutorService workPool = Executors.newCachedThreadPool();

    /**
     * 封装了selector.select()等事件轮询的代码
     */
    abstract class ReactorThread extends Thread {

        Selector selector;
        LinkedBlockingQueue<Runnable> taskQueue = new LinkedBlockingQueue<>();

        /**
         * Selector监听到有事件后,调用这个方法
         */
        public abstract void handler(SelectableChannel channel) throws Exception;

        private ReactorThread() throws IOException {
            selector = Selector.open();
        }

        volatile boolean running = false;

        @Override
        public void run() {
            // 轮询Selector事件
            while (running) {
                try {
                    // 执行队列中的任务
                    Runnable task;
                    while ((task = taskQueue.poll()) != null) {
                        task.run();
                    }
                    selector.select(1000);

                    // 获取查询结果
                    Set<SelectionKey> selected = selector.selectedKeys();
                    // 遍历查询结果
                    Iterator<SelectionKey> iter = selected.iterator();
                    while (iter.hasNext()) {
                        // 被封装的查询结果
                        SelectionKey key = iter.next();
                        iter.remove();
                        int readyOps = key.readyOps();
                        // 关注 Read 和 Accept两个事件
                        if ((readyOps & (SelectionKey.OP_READ | SelectionKey.OP_ACCEPT)) != 0 || readyOps == 0) {
                            try {
                                SelectableChannel channel = (SelectableChannel) key.attachment();
                                channel.configureBlocking(false);
                                handler(channel);
                                if (!channel.isOpen()) {
                                    key.cancel(); // 如果关闭了,就取消这个KEY的订阅
                                }
                            } catch (Exception ex) {
                                key.cancel(); // 如果有异常,就取消这个KEY的订阅
                            }
                        }
                    }
                    selector.selectNow();
                } catch (IOException e) {
                    e.printStackTrace();
                }
            }
        }

        private SelectionKey register(SelectableChannel channel) throws Exception {
            // 为什么register要以任务提交的形式,让reactor线程去处理?
            // 因为线程在执行channel注册到selector的过程中,会和调用selector.select()方法的线程争用同一把锁
            // 而select()方法实在eventLoop中通过while循环调用的,争抢的可能性很高,为了让register能更快的执行,就放到同一个线程来处理
            FutureTask<SelectionKey> futureTask = new FutureTask<>(() -> channel.register(selector, 0, channel));
            taskQueue.add(futureTask);
            return futureTask.get();
        }

        private void doStart() {
            if (!running) {
                running = true;
                start();
            }
        }
    }

    private ServerSocketChannel serverSocketChannel;
    // 1、创建多个线程 - accept处理reactor线程 (accept线程)
    private ReactorThread[] mainReactorThreads = new ReactorThread[1];
    // 2、创建多个线程 - io处理reactor线程  (I/O线程)
    private ReactorThread[] subReactorThreads = new ReactorThread[8];

    /**
     * 初始化线程组
     */
    private void newGroup() throws IOException {
        // 创建IO线程,负责处理客户端连接以后socketChannel的IO读写
        for (int i = 0; i < subReactorThreads.length; i++) {
            subReactorThreads[i] = new ReactorThread() {
                @Override
                public void handler(SelectableChannel channel) throws IOException {
                    // work线程只负责处理IO处理,不处理accept事件
                    SocketChannel ch = (SocketChannel) channel;
                    ByteBuffer requestBuffer = ByteBuffer.allocate(1024);
                    while (ch.isOpen() && ch.read(requestBuffer) != -1) {
                        // 长连接情况下,需要手动判断数据有没有读取结束 (此处做一个简单的判断: 超过0字节就认为请求结束了)
                        if (requestBuffer.position() > 0) break;
                    }
                    if (requestBuffer.position() == 0) return; // 如果没数据了, 则不继续后面的处理
                    requestBuffer.flip();
                    byte[] content = new byte[requestBuffer.limit()];
                    requestBuffer.get(content);
                    System.out.println(new String(content));
                    System.out.println(Thread.currentThread().getName() + "收到数据,来自:" + ch.getRemoteAddress());

                    // TODO 业务操作 数据库、接口...
                    workPool.submit(() -> {
                    });

                    // 响应结果 200
                    String response = "HTTP/1.1 200 OK\r\n" +
                            "Content-Length: 11\r\n\r\n" +
                            "Hello World";
                    ByteBuffer buffer = ByteBuffer.wrap(response.getBytes());
                    while (buffer.hasRemaining()) {
                        ch.write(buffer);
                    }
                }
            };
        }

        // 创建mainReactor线程, 只负责处理serverSocketChannel
        for (int i = 0; i < mainReactorThreads.length; i++) {
            mainReactorThreads[i] = new ReactorThread() {
                AtomicInteger incr = new AtomicInteger(0);

                @Override
                public void handler(SelectableChannel channel) throws Exception {
                    // 只做请求分发,不做具体的数据读取
                    ServerSocketChannel ch = (ServerSocketChannel) channel;
                    SocketChannel socketChannel = ch.accept();
                    socketChannel.configureBlocking(false);
                    // 收到连接建立的通知之后,分发给I/O线程继续去读取数据
                    int index = incr.getAndIncrement() % subReactorThreads.length;
                    ReactorThread workEventLoop = subReactorThreads[index];
                    workEventLoop.doStart();
                    SelectionKey selectionKey = workEventLoop.register(socketChannel);
                    selectionKey.interestOps(SelectionKey.OP_READ);
                    System.out.println(Thread.currentThread().getName() + "收到新连接 : " + socketChannel.getRemoteAddress());
                }
            };
        }


    }

    /**
     * 初始化channel,并且绑定一个eventLoop线程
     *
     * @throws IOException IO异常
     */
    private void initAndRegister() throws Exception {
        // 1、 创建ServerSocketChannel
        serverSocketChannel = ServerSocketChannel.open();
        serverSocketChannel.configureBlocking(false);
        // 2、 将serverSocketChannel注册到selector
        int index = new Random().nextInt(mainReactorThreads.length);
        mainReactorThreads[index].doStart();
        SelectionKey selectionKey = mainReactorThreads[index].register(serverSocketChannel);
        selectionKey.interestOps(SelectionKey.OP_ACCEPT);
    }

    /**
     * 绑定端口
     *
     * @throws IOException IO异常
     */
    private void bind() throws IOException {
        //  1、 正式绑定端口,对外服务
        serverSocketChannel.bind(new InetSocketAddress(8080));
        System.out.println("启动完成,端口8080");
    }

    public static void main(String[] args) throws Exception {
        NIOServerV3 nioServerV3 = new NIOServerV3();
        nioServerV3.newGroup(); // 1、 创建main和sub两组线程
        nioServerV3.initAndRegister(); // 2、 创建serverSocketChannel,注册到mainReactor线程上的selector上
        nioServerV3.bind(); // 3、 为serverSocketChannel绑定端口
    }
}

 

Java高并发网络编程(三)NIO

标签:%s   art   轮询   output   实现网络   关注   ima   技术   buffer缓冲区   

原文地址:https://www.cnblogs.com/aidata/p/11523627.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!