码迷,mamicode.com
首页 > 数据库 > 详细

sparkSQL1.1入门之三:sparkSQL组件之解析

时间:2014-10-27 12:53:06      阅读:616      评论:0      收藏:0      [点我收藏+]

标签:spark   sparksql   

      上篇在总体上介绍了sparkSQL的运行架构及其基本实现方法(Tree和Rule的配合),也大致介绍了sparkSQL中涉及到的各个概念和组件。本篇将详细地介绍一下关键的一些概念和组件,由于hiveContext继承自sqlContext,关键的概念和组件类似,只不过后者针对hive的特性做了一些修正和重写,所以本篇就只介绍sqlContext的关键的概念和组件。
  • 概念:
    • LogicalPlan
  • 组件:
    • SqlParser
    • Analyzer
    • Optimizer
    • Planner

1:LogicalPlan
在sparkSQL的运行架构中,LogicalPlan贯穿了大部分的过程,其中catalyst中的SqlParser、Analyzer、Optimizer都要对LogicalPlan进行操作。LogicalPlan的定义如下:

abstract class LogicalPlan extends QueryPlan[LogicalPlan] { self: Product => case class Statistics( sizeInBytes: BigInt ) lazy val statistics: Statistics = { if (children.size == 0) { throw new UnsupportedOperationException(s"LeafNode $nodeName must implement statistics.") } Statistics( sizeInBytes = children.map(_.statistics).map(_.sizeInBytes).product) } /** * Returns the set of attributes that this node takes as * input from its children. */ lazy val inputSet: AttributeSet = AttributeSet(children.flatMap(_.output)) /** * Returns true if this expression and all its children have been resolved to a specific schema * and false if it is still contains any unresolved placeholders. Implementations of LogicalPlan * can override this (e.g. * [[org.apache.spark.sql.catalyst.analysis.UnresolvedRelation UnresolvedRelation]] * should return `false`). */ lazy val resolved: Boolean = !expressions.exists(!_.resolved) && childrenResolved /** * Returns true if all its children of this query plan have been resolved. */ def childrenResolved: Boolean = !children.exists(!_.resolved) /** * Optionally resolves the given string to a [[NamedExpression]] using the input from all child * nodes of this LogicalPlan. The attribute is expressed as * as string in the following form: `[scope].AttributeName.[nested].[fields]...`. */ def resolveChildren(name: String): Option[NamedExpression] = resolve(name, children.flatMap(_.output)) /** * Optionally resolves the given string to a [[NamedExpression]] based on the output of this * LogicalPlan. The attribute is expressed as string in the following form: * `[scope].AttributeName.[nested].[fields]...`. */ def resolve(name: String): Option[NamedExpression] = resolve(name, output) /** Performs attribute resolution given a name and a sequence of possible attributes. */ protected def resolve(name: String, input: Seq[Attribute]): Option[NamedExpression] = { val parts = name.split("\\.") val options = input.flatMap { option => val remainingParts = if (option.qualifiers.contains(parts.head) && parts.size > 1) parts.drop(1) else parts if (option.name == remainingParts.head) (option, remainingParts.tail.toList) :: Nil else Nil } options.distinct match { case Seq((a, Nil)) => Some(a) // One match, no nested fields, use it. // One match, but we also need to extract the requested nested field. case Seq((a, nestedFields)) => a.dataType match { case StructType(fields) => Some(Alias(nestedFields.foldLeft(a: Expression)(GetField), nestedFields.last)()) case _ => None // Don‘t know how to resolve these field references } case Seq() => None // No matches. case ambiguousReferences => throw new TreeNodeException( this, s"Ambiguous references to $name: ${ambiguousReferences.mkString(",")}") } } }

在LogicalPlan里维护者一套统计数据和属性数据,也提供了解析方法。同时延伸了三种类型的LogicalPlan:
  • LeafNode:对应于trees.LeafNode的LogicalPlan
  • UnaryNode:对应于trees.UnaryNode的LogicalPlan
  • BinaryNode:对应于trees.BinaryNode的LogicalPlan
而对于SQL语句解析时,会调用和SQL匹配的操作方法来进行解析;这些操作分四大类,最终生成LeafNode、UnaryNode、BinaryNode中的一种:
  • basicOperators:一些数据基本操作,如Ioin、Union、Filter、Project、Sort
  • commands:一些命令操作,如SetCommand、CacheCommand
  • partitioning:一些分区操作,如RedistributeData
  • ScriptTransformation:对脚本的处理,如ScriptTransformation
  • LogicalPlan类的总体架构如下所示
bubuko.com,布布扣
 
2:SqlParser
SqlParser的功能就是将SQL语句解析成Unresolved LogicalPlan。现阶段的SqlParser语法解析功能比较简单,支持的语法比较有限。其解析过程中有两个关键组件和一个关键函数:
  • 词法读入器SqlLexical,其作用就是将输入的SQL语句进行扫描、去空、去注释、校验、分词等动作。
  • SQL语法表达式query,其作用定义SQL语法表达式,同时也定义了SQL语法表达式的具体实现,即将不同的表达式生成不同sparkSQL的Unresolved LogicalPlan。
  • 函数phrase(),上面个两个组件通过调用phrase(query)(new lexical.Scanner(input)),完成对SQL语句的解析;在解析过程中,SqlLexical一边读入,一边解析,如果碰上生成符合SQL语法的表达式时,就调用相应SQL语法表达式的具体实现函数,将SQL语句解析成Unresolved LogicalPlan。
下面看看sparkSQL的整个解析过程和相关组件:
A:解析过程
首先,在sqlContext中使用下面代码调用catalyst.SqlParser:

/*源自 sql/core/src/main/scala/org/apache/spark/sql/SQLContext.scala */

  protected[sql] val parser = new catalyst.SqlParser

  protected[sql] def parseSql(sql: String): LogicalPlan = parser(sql)

然后,直接在SqlParser的apply方法中对输入的SQL语句进行解析,解析功能的核心代码就是:
phrase(query)(new lexical.Scanner(input))

/*源自 src/main/scala/org/apache/spark/sql/catalyst/SqlParser.scala */

class SqlParser extends StandardTokenParsers with PackratParsers { def apply(input: String): LogicalPlan = { if (input.trim.toLowerCase.startsWith("set")) { //set设置项的处理

...... } else { phrase(query)(new lexical.Scanner(input)) match { case Success(r, x) => r case x => sys.error(x.toString) } } }

......

可以看得出来,该语句就是调用phrase()函数,使用SQL语法表达式query,对词法读入器lexical读入的SQL语句进行解析,其中词法读入器lexical通过重写语句:override val lexical = new SqlLexical(reservedWords) 调用扩展了功能的SqlLexical。其定义:

/*源自 src/main/scala/org/apache/spark/sql/catalyst/SqlParser.scala */  

// Use reflection to find the reserved words defined in this class. protected val reservedWords = this.getClass .getMethods .filter(_.getReturnType == classOf[Keyword]) .map(_.invoke(this).asInstanceOf[Keyword].str) override val lexical = new SqlLexical(reservedWords)

为了加深对SQL语句解析过程的理解,让我们看看下面这个简单数字表达式解析过程来说明:

import scala.util.parsing.combinator.PackratParsers import scala.util.parsing.combinator.syntactical._ object mylexical extends StandardTokenParsers with PackratParsers { //定义分割符 lexical.delimiters ++= List(".", ";", "+", "-", "*") //定义表达式,支持加,减,乘 lazy val expr: PackratParser[Int] = plus | minus | multi //加法表示式的实现 lazy val plus: PackratParser[Int] = num ~ "+" ~ num ^^ { case n1 ~ "+" ~ n2 => n1.toInt + n2.toInt} //减法表达式的实现 lazy val minus: PackratParser[Int] = num ~ "-" ~ num ^^ { case n1 ~ "-" ~ n2 => n1.toInt - n2.toInt} //乘法表达式的实现 lazy val multi: PackratParser[Int] = num ~ "*" ~ num ^^ { case n1 ~ "*" ~ n2 => n1.toInt * n2.toInt} lazy val num = numericLit def parse(input: String) = {

//定义词法读入器myread,并将扫描头放置在input的首位

val myread = new PackratReader(new lexical.Scanner(input)) print("处理表达式 " + input) phrase(expr)(myread) match { case Success(result, _) => println(" Success!"); println(result); Some(result) case n => println(n); println("Err!"); None } } def main(args: Array[String]) { val prg = "6 * 3" :: "24-/*aaa*/4" :: "a+5" :: "21/3" :: Nil prg.map(parse) } }

运行结果:

处理表达式 6 * 3 Success! //lexical对空格进行了处理,得到6*3 18 //6*3符合乘法表达式,调用n1.toInt * n2.toInt,得到结果并返回

处理表达式 24-/*aaa*/4 Success! //lexical对注释进行了处理,得到20-4 20 //20-4符合减法表达式,调用n1.toInt - n2.toInt,得到结果并返回 处理表达式 a+5[1.1] failure: number expected //lexical在解析到a,发现不是整数型,故报错误位置和内容 a+5 ^ Err! 处理表达式 21/3[1.3] failure: ``*‘‘ expected but ErrorToken(illegal character) found //lexical在解析到/,发现不是分割符,故报错误位置和内容 21/3 ^ Err!

      在运行的时候,首先对表达式 6 * 3 进行解析,词法读入器myread将扫描头置于6的位置;当phrase()函数使用定义好的数字表达式expr处理6 * 3的时候,6 * 3每读入一个词法,就和expr进行匹配,如读入6*和expr进行匹配,先匹配表达式plus,*和+匹配不上;就继续匹配表达式minus,*和-匹配不上;就继续匹配表达式multi,这次匹配上了,等读入3的时候,因为3是num类型,就调用调用n1.toInt * n2.toInt进行计算。
      注意,这里的expr、plus、minus、multi、num都是表达式,|、~、^^是复合因子,表达式和复合因子可以组成一个新的表达式,如plus(num ~ "+" ~ num ^^ { case n1 ~ "+" ~ n2 => n1.toInt + n2.toInt})就是一个由num、+、num、函数构成的复合表达式;而expr(plus | minus | multi)是由plus、minus、multi构成的复合表达式;复合因子的含义定义在类scala/util/parsing/combinator/Parsers.scala,下面是几个常用的复合因子:
  • p ~ q p成功,才会q;放回p,q的结果
  • p ~> q p成功,才会q,返回q的结果
  • p <~ q p成功,才会q,返回p的结果
  • p | q p失败则q,返回第一个成功的结果
  • p ^^ f 如果p成功,将函数f应用到p的结果上
  • p ^? f 如果p成功,如果函数f可以应用到p的结果上的话,就将p的结果用f进行转换
      针对上面的6 * 3使用的是multi表达式(num ~ "*" ~ num ^^ { case n1 ~ "*" ~ n2 => n1.toInt * n2.toInt}),其含义就是:num后跟*再跟num,如果满足就将使用函数n1.toInt * n2.toInt。
      到这里为止,大家应该明白整个解析过程了吧,bubuko.com,布布扣。SqlParser的原理和这个表达式解析器使用了一样的原理,只不过是定义的SQL语法表达式query复杂一些,使用的词法读入器更丰富一些而已。下面分别介绍一下相关组件SqlParser、SqlLexical、query。

B:SqlParser
首先,看看SqlParser的UML图:
bubuko.com,布布扣
其次,看看SqlParser的定义,SqlParser继承自类StandardTokenParsers和特质PackratParsers:
其中,PackratParsers:
  • 扩展了scala.util.parsing.combinator.Parsers所提供的parser,做了内存化处理;
  • Packrat解析器实现了回溯解析和递归下降解析,具有无限先行和线性分析时的优势。同时,也支持左递归词法解析。
  • 从Parsers中继承出来的class或trait都可以使用PackratParsers,如:object MyGrammar extends StandardTokenParsers with PackratParsers;
  • PackratParsers将分析结果进行缓存,因此,PackratsParsers需要PackratReader(内存化处理的Reader)作为输入,程序员可以手工创建PackratReader,如production(new PackratReader(new lexical.Scanner(input))),更多的细节参见scala库中/scala/util/parsing/combinator/PackratParsers.scala文件。
StandardTokenParsers是最终继承自Parsers
  • 增加了词法的处理能力(Parsers是字符处理),在StdTokenParsers中定义了四种基本词法:
    • keyword tokens
    • numeric literal tokens
    • string literal tokens
    • identifier tokens
  • 定义了一个词法读入器lexical,可以进行词法读入
SqlParser在进行解析SQL语句的时候是调用了PackratParsers中phrase():

/*源自 scala/util/parsing/combinator/PackratParsers.scala */

/** * A parser generator delimiting whole phrases (i.e. programs). * * Overridden to make sure any input passed to the argument parser * is wrapped in a `PackratReader`. */ override def phrase[T](p: Parser[T]) = { val q = super.phrase(p) new PackratParser[T] { def apply(in: Input) = in match { case in: PackratReader[_] => q(in) case in => q(new PackratReader(in)) } } }

在解析过程中,一般会定义多个表达式,如上面例子中的plus | minus | multi,一旦前一个表达式不能解析的话,就会调用下一个表达式进行解析:

/*源自 scala/util/parsing/combinator/Parsers.scala */

def append[U >: T](p0: => Parser[U]): Parser[U] = { lazy val p = p0 // lazy argument Parser{ in => this(in) append p(in)} }

表达式解析正确后,具体的实现函数是在PackratParsers中完成:

/*源自 scala/util/parsing/combinator/PackratParsers.scala */  

def memo[T](p: super.Parser[T]): PackratParser[T] = { new PackratParser[T] { def apply(in: Input) = { val inMem = in.asInstanceOf[PackratReader[Elem]] //look in the global cache if in a recursion val m = recall(p, inMem) m match { //nothing has been done due to recall case None => val base = LR(Failure("Base Failure",in), p, None) inMem.lrStack = base::inMem.lrStack //cache base result inMem.updateCacheAndGet(p,MemoEntry(Left(base))) //parse the input val tempRes = p(in) //the base variable has passed equality tests with the cache inMem.lrStack = inMem.lrStack.tail //check whether base has changed, if yes, we will have a head base.head match { case None => /*simple result*/ inMem.updateCacheAndGet(p,MemoEntry(Right(tempRes))) tempRes case s@Some(_) => /*non simple result*/ base.seed = tempRes //the base variable has passed equality tests with the cache val res = lrAnswer(p, inMem, base) res } case Some(mEntry) => { //entry found in cache mEntry match { case MemoEntry(Left(recDetect)) => { setupLR(p, inMem, recDetect) //all setupLR does is change the heads of the recursions, so the seed will stay the same recDetect match {case LR(seed, _, _) => seed.asInstanceOf[ParseResult[T]]} } case MemoEntry(Right(res: ParseResult[_])) => res.asInstanceOf[ParseResult[T]] } } } } } }

StandardTokenParsers增加了词法处理能力,SqlParers定义了大量的关键字,重写了词法读入器,将这些关键字应用于词法读入器。

C:SqlLexical
词法读入器SqlLexical扩展了StdLexical的功能,首先增加了大量的关键字:

/*源自 src/main/scala/org/apache/spark/sql/catalyst/SqlParser.scala */  

protected val ALL = Keyword("ALL") protected val AND = Keyword("AND") protected val AS = Keyword("AS") protected val ASC = Keyword("ASC") ...... protected val SUBSTR = Keyword("SUBSTR") protected val SUBSTRING = Keyword("SUBSTRING")

其次丰富了分隔符、词法处理、空格注释处理:

/*源自 src/main/scala/org/apache/spark/sql/catalyst/SqlParser.scala */

delimiters += ( "@", "*", "+", "-", "<", "=", "<>", "!=", "<=", ">=", ">", "/", "(", ")", ",", ";", "%", "{", "}", ":", "[", "]" ) override lazy val token: Parser[Token] = ( identChar ~ rep( identChar | digit ) ^^ { case first ~ rest => processIdent(first :: rest mkString "") } | rep1(digit) ~ opt(‘.‘ ~> rep(digit)) ^^ { case i ~ None => NumericLit(i mkString "") case i ~ Some(d) => FloatLit(i.mkString("") + "." + d.mkString("")) } | ‘\‘‘ ~ rep( chrExcept(‘\‘‘, ‘\n‘, EofCh) ) ~ ‘\‘‘ ^^ { case ‘\‘‘ ~ chars ~ ‘\‘‘ => StringLit(chars mkString "") } | ‘\"‘ ~ rep( chrExcept(‘\"‘, ‘\n‘, EofCh) ) ~ ‘\"‘ ^^ { case ‘\"‘ ~ chars ~ ‘\"‘ => StringLit(chars mkString "") } | EofCh ^^^ EOF | ‘\‘‘ ~> failure("unclosed string literal") | ‘\"‘ ~> failure("unclosed string literal") | delim | failure("illegal character") ) override def identChar = letter | elem(‘_‘) | elem(‘.‘) override def whitespace: Parser[Any] = rep( whitespaceChar | ‘/‘ ~ ‘*‘ ~ comment | ‘/‘ ~ ‘/‘ ~ rep( chrExcept(EofCh, ‘\n‘) ) | ‘#‘ ~ rep( chrExcept(EofCh, ‘\n‘) ) | ‘-‘ ~ ‘-‘ ~ rep( chrExcept(EofCh, ‘\n‘) ) | ‘/‘ ~ ‘*‘ ~ failure("unclosed comment") )

最后看看SQL语法表达式query。

D:query
SQL语法表达式支持3种操作:select、insert、cache

/*源自 src/main/scala/org/apache/spark/sql/catalyst/SqlParser.scala */

protected lazy val query: Parser[LogicalPlan] = ( select * ( UNION ~ ALL ^^^ { (q1: LogicalPlan, q2: LogicalPlan) => Union(q1, q2) } | INTERSECT ^^^ { (q1: LogicalPlan, q2: LogicalPlan) => Intersect(q1, q2) } | EXCEPT ^^^ { (q1: LogicalPlan, q2: LogicalPlan) => Except(q1, q2)} | UNION ~ opt(DISTINCT) ^^^ { (q1: LogicalPlan, q2: LogicalPlan) => Distinct(Union(q1, q2)) } ) | insert | cache )

而这些操作还有具体的定义,如select,这里开始定义了具体的函数,将SQL语句转换成构成Unresolved LogicalPlan的一些Node

/*源自 src/main/scala/org/apache/spark/sql/catalyst/SqlParser.scala */

protected lazy val select: Parser[LogicalPlan] = SELECT ~> opt(DISTINCT) ~ projections ~ opt(from) ~ opt(filter) ~ opt(grouping) ~ opt(having) ~ opt(orderBy) ~ opt(limit) <~ opt(";") ^^ { case d ~ p ~ r ~ f ~ g ~ h ~ o ~ l => val base = r.getOrElse(NoRelation) val withFilter = f.map(f => Filter(f, base)).getOrElse(base) val withProjection = g.map {g => Aggregate(assignAliases(g), assignAliases(p), withFilter) }.getOrElse(Project(assignAliases(p), withFilter)) val withDistinct = d.map(_ => Distinct(withProjection)).getOrElse(withProjection) val withHaving = h.map(h => Filter(h, withDistinct)).getOrElse(withDistinct) val withOrder = o.map(o => Sort(o, withHaving)).getOrElse(withHaving) val withLimit = l.map { l => Limit(l, withOrder) }.getOrElse(withOrder) withLimit }


3:Analyzer
Analyzer的功能就是对来自SqlParser的Unresolved LogicalPlan中的UnresolvedAttribute项和UnresolvedRelation项,对照catalog和FunctionRegistry生成Analyzed LogicalPlan。Analyzer定义了5大类14小类的rule:

/*源自 sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/analysis/Analyzer.scala */

val batches: Seq[Batch] = Seq( Batch("MultiInstanceRelations", Once, NewRelationInstances), Batch("CaseInsensitiveAttributeReferences", Once, (if (caseSensitive) Nil else LowercaseAttributeReferences :: Nil) : _*), Batch("Resolution", fixedPoint, ResolveReferences :: ResolveRelations :: ResolveSortReferences :: NewRelationInstances :: ImplicitGenerate :: StarExpansion :: ResolveFunctions :: GlobalAggregates :: UnresolvedHavingClauseAttributes :: typeCoercionRules :_*), Batch("Check Analysis", Once, CheckResolution), Batch("AnalysisOperators", fixedPoint, EliminateAnalysisOperators) )

  • MultiInstanceRelations
    • NewRelationInstances
  • CaseInsensitiveAttributeReferences
    • LowercaseAttributeReferences
  • Resolution
    • ResolveReferences
    • ResolveRelations
    • ResolveSortReferences 
    • NewRelationInstances 
    • ImplicitGenerate
    • StarExpansion
    • ResolveFunctions
    • GlobalAggregates
    • UnresolvedHavingClauseAttributes
    • typeCoercionRules
  • Check Analysis
    • CheckResolution
  • AnalysisOperators
    • EliminateAnalysisOperators
这些rule都是使用transform对Unresolved LogicalPlan进行操作,其中typeCoercionRules是对HiveQL语义进行处理,在其下面又定义了多个rule:PropagateTypes、ConvertNaNs、WidenTypes、PromoteStrings、BooleanComparisons、BooleanCasts、StringToIntegralCasts、FunctionArgumentConversion、CaseWhenCoercion、Division,同样了这些rule也是使用transform对Unresolved LogicalPlan进行操作。这些rule操作后,使得LogicalPlan的信息变得丰满和易懂。下面拿其中的两个rule来简单介绍一下:
比如rule之ResolveReferences,最终调用LogicalPlan的resolveChildren对列名给一名字和序号,如name#67之列的,这样保持列的唯一性:

/*源自 sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/analysis/Analyzer.scala */

object ResolveReferences extends Rule[LogicalPlan] { def apply(plan: LogicalPlan): LogicalPlan = plan transformUp { case q: LogicalPlan if q.childrenResolved => logTrace(s"Attempting to resolve ${q.simpleString}") q transformExpressions { case u @ UnresolvedAttribute(name) => // Leave unchanged if resolution fails. Hopefully will be resolved next round. val result = q.resolveChildren(name).getOrElse(u) logDebug(s"Resolving $u to $result") result } } }

      又比如rule之StarExpansion,其作用就是将Select * Fom tbl中的*展开,赋予列名:

/*源自 sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/analysis/Analyzer.scala */

object StarExpansion extends Rule[LogicalPlan] { def apply(plan: LogicalPlan): LogicalPlan = plan transform { // Wait until children are resolved case p: LogicalPlan if !p.childrenResolved => p // If the projection list contains Stars, expand it. case p @ Project(projectList, child) if containsStar(projectList) => Project( projectList.flatMap { case s: Star => s.expand(child.output) case o => o :: Nil }, child) case t: ScriptTransformation if containsStar(t.input) => t.copy( input = t.input.flatMap { case s: Star => s.expand(t.child.output) case o => o :: Nil } ) // If the aggregate function argument contains Stars, expand it. case a: Aggregate if containsStar(a.aggregateExpressions) => a.copy( aggregateExpressions = a.aggregateExpressions.flatMap { case s: Star => s.expand(a.child.output) case o => o :: Nil } ) } /** * Returns true if `exprs` contains a [[Star]]. */ protected def containsStar(exprs: Seq[Expression]): Boolean = exprs.collect { case _: Star => true }.nonEmpty } }


4:Optimizer
Optimizer的功能就是将来自Analyzer的Analyzed LogicalPlan进行多种rule优化,生成Optimized LogicalPlan。Optimizer定义了3大类12个小类的优化rule:

/*源自 sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/optimizer/Optimizer.scala */

object Optimizer extends RuleExecutor[LogicalPlan] { val batches = Batch("Combine Limits", FixedPoint(100), CombineLimits) :: Batch("ConstantFolding", FixedPoint(100), NullPropagation, ConstantFolding, LikeSimplification, BooleanSimplification, SimplifyFilters, SimplifyCasts, SimplifyCaseConversionExpressions) :: Batch("Filter Pushdown", FixedPoint(100), CombineFilters, PushPredicateThroughProject, PushPredicateThroughJoin, ColumnPruning) :: Nil }

  • Combine Limits 合并Limit
    • CombineLimits:将两个相邻的limit合为一个
  • ConstantFolding 常量叠加
    • NullPropagation 空格处理 
    • ConstantFolding:常量叠加
    • LikeSimplification:like表达式简化
    • BooleanSimplification:布尔表达式简化
    • SimplifyFilters:Filter简化
    • SimplifyCasts:Cast简化
    • SimplifyCaseConversionExpressions:CASE大小写转化表达式简化 
  • Filter Pushdown Filter下推
    • CombineFilters Filter合并 
    • PushPredicateThroughProject 通过Project谓词下推 
    • PushPredicateThroughJoin 通过Join谓词下推 
    • ColumnPruning 列剪枝 
这些优化rule都是使用transform对LogicalPlan进行操作,如合并、删除冗余、简化、剪枝等,是整个LogicalPlan变得更简洁更高效。
比如将两个相邻的limit进行合并,可以使用CombineLimits。象sql("select * from (select * from src limit 5)a limit 3 ") 这样一个SQL语句,会将limit 5和limit 3进行合并,只剩一个一个limit 3。

/*源自 sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/optimizer/Optimizer.scala */

object CombineLimits extends Rule[LogicalPlan] { def apply(plan: LogicalPlan): LogicalPlan = plan transform { case ll @ Limit(le, nl @ Limit(ne, grandChild)) => Limit(If(LessThan(ne, le), ne, le), grandChild) } }

      又比如Null值的处理,可以使用NullPropagation处理。象sql("select count(null) from src where key is not null")这样一个SQL语句会转换成sql("select count(0) from src where key is not null")来处理。

/*源自 sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/optimizer/Optimizer.scala */

object NullPropagation extends Rule[LogicalPlan] { def apply(plan: LogicalPlan): LogicalPlan = plan transform { case q: LogicalPlan => q transformExpressionsUp { case e @ Count(Literal(null, _)) => Cast(Literal(0L), e.dataType) case e @ Sum(Literal(c, _)) if c == 0 => Cast(Literal(0L), e.dataType) case e @ Average(Literal(c, _)) if c == 0 => Literal(0.0, e.dataType) case e @ IsNull(c) if !c.nullable => Literal(false, BooleanType) case e @ IsNotNull(c) if !c.nullable => Literal(true, BooleanType) case e @ GetItem(Literal(null, _), _) => Literal(null, e.dataType) case e @ GetItem(_, Literal(null, _)) => Literal(null, e.dataType) case e @ GetField(Literal(null, _), _) => Literal(null, e.dataType) case e @ EqualNullSafe(Literal(null, _), r) => IsNull(r) case e @ EqualNullSafe(l, Literal(null, _)) => IsNull(l) ...... } } }

      对于具体的优化方法可以使用下一章所介绍的hive/console调试方法进行调试,用户可以使用自定义的优化函数,也可以使用sparkSQL提供的优化函数。使用前先定义一个要优化查询,然后查看一下该查询的Analyzed LogicalPlan,再使用优化函数去优化,将生成的Optimized LogicalPlan和Analyzed LogicalPlan进行比较,就可以看到优化的效果。

5:SpankPlan

sparkSQL1.1入门之三:sparkSQL组件之解析

标签:spark   sparksql   

原文地址:http://blog.csdn.net/book_mmicky/article/details/40504483

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!