标签:exce example 运行时 问题 ima 直接 实现原理 依赖 system
本系列文章将整理到我在GitHub上的《Java面试指南》仓库,更多精彩内容请到我的仓库里查看
https://github.com/h2pl/Java-Tutorial
喜欢的话麻烦点下Star哈
文章首发于我的个人博客:
www.how2playlife.com
本文是微信公众号【Java技术江湖】的《夯实Java基础系列博文》其中一篇,本文部分内容来源于网络,为了把本文主题讲得清晰透彻,也整合了很多我认为不错的技术博客内容,引用其中了一些比较好的博客文章,如有侵权,请联系作者。
该系列博文会告诉你如何从入门到进阶,一步步地学习Java基础知识,并上手进行实战,接着了解每个Java知识点背后的实现原理,更完整地了解整个Java技术体系,形成自己的知识框架。为了更好地总结和检验你的学习成果,本系列文章也会提供每个知识点对应的面试题以及参考答案。
如果对本系列文章有什么建议,或者是有什么疑问的话,也可以关注公众号【Java技术江湖】联系作者,欢迎你参与本系列博文的创作和修订。
final关键字在java中使用非常广泛,可以申明成员变量、方法、类、本地变量。一旦将引用声明为final,将无法再改变这个引用。final关键字还能保证内存同步,本博客将会从final关键字的特性到从java内存层面保证同步讲解。这个内容在面试中也有可能会出现。
final变量有成员变量或者是本地变量(方法内的局部变量),在类成员中final经常和static一起使用,作为类常量使用。其中类常量必须在声明时初始化,final成员常量可以在构造函数初始化。
public class Main {
public static final int i; //报错,必须初始化 因为常量在常量池中就存在了,调用时不需要类的初始化,所以必须在声明时初始化
public static final int j;
Main() {
i = 2;
j = 3;
}
}
就如上所说的,对于类常量,JVM会缓存在常量池中,在读取该变量时不会加载这个类。
public class Main {
public static final int i = 2;
Main() {
System.out.println("调用构造函数"); // 该方法不会调用
}
public static void main(String[] args) {
System.out.println(Main.i);
}
}
@Test
public void final修饰基本类型变量和引用() {
final int a = 1;
final int[] b = {1};
final int[] c = {1};
// b = c;报错
b[0] = 1;
final String aa = "a";
final Fi f = new Fi();
//aa = "b";报错
// f = null;//报错
f.a = 1;
}
final方法表示该方法不能被子类的方法重写,将方法声明为final,在编译的时候就已经静态绑定了,不需要在运行时动态绑定。final方法调用时使用的是invokespecial指令。
class PersonalLoan{
public final String getName(){
return"personal loan”;
}
}
class CheapPersonalLoan extends PersonalLoan{
@Override
public final String getName(){
return"cheap personal loan";//编译错误,无法被重载
}
public String test() {
return getName(); //可以调用,因为是public方法
}
}
final类不能被继承,final类中的方法默认也会是final类型的,java中的String类和Integer类都是final类型的。
class Si{
//一般情况下final修饰的变量一定要被初始化。
//只有下面这种情况例外,要求该变量必须在构造方法中被初始化。
//并且不能有空参数的构造方法。
//这样就可以让每个实例都有一个不同的变量,并且这个变量在每个实例中只会被初始化一次
//于是这个变量在单个实例里就是常量了。
final int s ;
Si(int s) {
this.s = s;
}
}
class Bi {
final int a = 1;
final void go() {
//final修饰方法无法被继承
}
}
class Ci extends Bi {
final int a = 1;
// void go() {
// //final修饰方法无法被继承
// }
}
final char[]a = {'a'};
final int[]b = {1};
final class PersonalLoan{}
class CheapPersonalLoan extends PersonalLoan { //编译错误,无法被继承
}
@Test
public void final修饰类() {
//引用没有被final修饰,所以是可变的。
//final只修饰了Fi类型,即Fi实例化的对象在堆中内存地址是不可变的。
//虽然内存地址不可变,但是可以对内部的数据做改变。
Fi f = new Fi();
f.a = 1;
System.out.println(f);
f.a = 2;
System.out.println(f);
//改变实例中的值并不改变内存地址。
Fi ff = f;
//让引用指向新的Fi对象,原来的f对象由新的引用ff持有。
//引用的指向改变也不会改变原来对象的地址
f = new Fi();
System.out.println(f);
System.out.println(ff);
}
final方法的好处:
1、final 对于常量来说,意味着值不能改变,例如 final int i=100。这个i的值永远都是100。
但是对于变量来说又不一样,只是标识这个引用不可被改变,例如 final File f=new File("c:\test.txt");
那么这个f一定是不能被改变的,如果f本身有方法修改其中的成员变量,例如是否可读,是允许修改的。有个形象的比喻:一个女子定义了一个final的老公,这个老公的职业和收入都是允许改变的,只是这个女人不会换老公而已。
final修饰的变量有三种:静态变量、实例变量和局部变量,分别表示三种类型的常量。
另外,final变量定义的时候,可以先声明,而不给初值,这中变量也称为final空白,无论什么情况,编译器都确保空白final在使用之前必须被初始化。
但是,final空白在final关键字final的使用上提供了更大的灵活性,为此,一个类中的final数据成员就可以实现依对象而有所不同,却有保持其恒定不变的特征。
public class FinalTest {
final int p;
final int q=3;
FinalTest(){
p=1;
}
FinalTest(int i){
p=i;//可以赋值,相当于直接定义p
q=i;//不能为一个final变量赋值
}
}
刚提到了内嵌机制,现在详细展开。
要知道调用一个函数除了函数本身的执行时间之外,还需要额外的时间去寻找这个函数(类内部有一个函数签名和函数地址的映射表)。所以减少函数调用次数就等于降低了性能消耗。
final修饰的函数会被编译器优化,优化的结果是减少了函数调用的次数。如何实现的,举个例子给你看:
public class Test{
final void func(){System.out.println("g");};
public void main(String[] args){
for(int j=0;j<1000;j++)
func();
}}
经过编译器优化之后,这个类变成了相当于这样写:
public class Test{
final void func(){System.out.println("g");};
public void main(String[] args){
for(int j=0;j<1000;j++)
{System.out.println("g");}
}}
看出来区别了吧?编译器直接将func的函数体内嵌到了调用函数的地方,这样的结果是节省了1000次函数调用,当然编译器处理成字节码,只是我们可以想象成这样,看个明白。
不过,当函数体太长的话,用final可能适得其反,因为经过编译器内嵌之后代码长度大大增加,于是就增加了jvm解释字节码的时间。
在使用final修饰方法的时候,编译器会将被final修饰过的方法插入到调用者代码处,提高运行速度和效率,但被final修饰的方法体不能过大,编译器可能会放弃内联,但究竟多大的方法会放弃,我还没有做测试来计算过。
下面这些内容是通过两个疑问来继续阐述的
见下面的测试代码,我会执行五次:
public class Test
{
public static void getJava()
{
String str1 = "Java ";
String str2 = "final ";
for (int i = 0; i < 10000; i++)
{
str1 += str2;
}
}
public static final void getJava_Final()
{
String str1 = "Java ";
String str2 = "final ";
for (int i = 0; i < 10000; i++)
{
str1 += str2;
}
}
public static void main(String[] args)
{
long start = System.currentTimeMillis();
getJava();
System.out.println("调用不带final修饰的方法执行时间为:" + (System.currentTimeMillis() - start) + "毫秒时间");
start = System.currentTimeMillis();
String str1 = "Java ";
String str2 = "final ";
for (int i = 0; i < 10000; i++)
{
str1 += str2;
}
System.out.println("正常的执行时间为:" + (System.currentTimeMillis() - start) + "毫秒时间");
start = System.currentTimeMillis();
getJava_Final();
System.out.println("调用final修饰的方法执行时间为:" + (System.currentTimeMillis() - start) + "毫秒时间");
}
}
结果为:
第一次:
调用不带final修饰的方法执行时间为:1732毫秒时间
正常的执行时间为:1498毫秒时间
调用final修饰的方法执行时间为:1593毫秒时间
第二次:
调用不带final修饰的方法执行时间为:1217毫秒时间
正常的执行时间为:1031毫秒时间
调用final修饰的方法执行时间为:1124毫秒时间
第三次:
调用不带final修饰的方法执行时间为:1154毫秒时间
正常的执行时间为:1140毫秒时间
调用final修饰的方法执行时间为:1202毫秒时间
第四次:
调用不带final修饰的方法执行时间为:1139毫秒时间
正常的执行时间为:999毫秒时间
调用final修饰的方法执行时间为:1092毫秒时间
第五次:
调用不带final修饰的方法执行时间为:1186毫秒时间
正常的执行时间为:1030毫秒时间
调用final修饰的方法执行时间为:1109毫秒时间
由以上运行结果不难看出,执行最快的是“正常的执行”即代码直接编写,而使用final修饰的方法,不像有些书上或者文章上所说的那样,速度与效率与“正常的执行”无异,而是位于第二位,最差的是调用不加final修饰的方法。
观点:加了比不加好一点。
见代码:
public class Final
{
public static void main(String[] args)
{
Color.color[3] = "white";
for (String color : Color.color)
System.out.print(color+" ");
}
}
class Color
{
public static final String[] color = { "red", "blue", "yellow", "black" };
}
执行结果:
red blue yellow white
看!,黑色变成了白色。
?
? 在使用findbugs插件时,就会提示public static String[] color = { "red", "blue", "yellow", "black" };这行代码不安全,但加上final修饰,这行代码仍然是不安全的,因为final没有做到保证变量的值不会被修改!
?
? 原因是:final关键字只能保证变量本身不能被赋与新值,而不能保证变量的内部结构不被修改。例如在main方法有如下代码Color.color = new String[]{""};就会报错了。
那可能有的同学就会问了,加上final关键字不能保证数组不会被外部修改,那有什么方法能够保证呢?答案就是降低访问级别,把数组设为private。这样的话,就解决了数组在外部被修改的不安全性,但也产生了另一个问题,那就是这个数组要被外部使用的。
解决这个问题见代码:
import java.util.AbstractList;
import java.util.List;
public class Final
{
public static void main(String[] args)
{
for (String color : Color.color)
System.out.print(color + " ");
Color.color.set(3, "white");
}
}
class Color
{
private static String[] _color = { "red", "blue", "yellow", "black" };
public static List<String> color = new AbstractList<String>()
{
@Override
public String get(int index)
{
return _color[index];
}
@Override
public String set(int index, String value)
{
throw new RuntimeException("为了代码安全,不能修改数组");
}
@Override
public int size()
{
return _color.length;
}
};
}
这样就OK了,既保证了代码安全,又能让数组中的元素被访问了。
规则1:final修饰的方法不可以被重写。
规则2:final修饰的方法仅仅是不能重写,但它完全可以被重载。
规则3:父类中private final方法,子类可以重新定义,这种情况不是重写。
代码示例
规则1代码
public class FinalMethodTest
{
public final void test(){}
}
class Sub extends FinalMethodTest
{
// 下面方法定义将出现编译错误,不能重写final方法
public void test(){}
}
规则2代码
public class Finaloverload {
//final 修饰的方法只是不能重写,完全可以重载
public final void test(){}
public final void test(String arg){}
}
规则3代码
public class PrivateFinalMethodTest
{
private final void test(){}
}
class Sub extends PrivateFinalMethodTest
{
// 下面方法定义将不会出现问题
public void test(){}
}
与前面介绍的锁和 volatile 相比较,对 final 域的读和写更像是普通的变量访问。对于 final 域,编译器和处理器要遵守两个重排序规则:
下面,我们通过一些示例性的代码来分别说明这两个规则:
public class FinalExample { int i; // 普通变量 final int j; //final 变量 static FinalExample obj; ``` public void FinalExample () { // 构造函数 i = 1; // 写普通域 j = 2; // 写 final 域 } public static void writer () { // 写线程 A 执行 obj = new FinalExample (); } public static void reader () { // 读线程 B 执行 FinalExample object = obj; // 读对象引用 int a = object.i; // 读普通域 int b = object.j; // 读 final 域 } ``` }
这里假设一个线程 A 执行 writer () 方法,随后另一个线程 B 执行 reader () 方法。下面我们通过这两个线程的交互来说明这两个规则。
写 final 域的重排序规则禁止把 final 域的写重排序到构造函数之外。这个规则的实现包含下面 2 个方面:
现在让我们分析 writer () 方法。writer () 方法只包含一行代码:finalExample = new FinalExample ()。这行代码包含两个步骤:
假设线程 B 读对象引用与读对象的成员域之间没有重排序(马上会说明为什么需要这个假设),下图是一种可能的执行时序:
在上图中,写普通域的操作被编译器重排序到了构造函数之外,读线程 B 错误的读取了普通变量 i 初始化之前的值。而写 final 域的操作,被写 final 域的重排序规则“限定”在了构造函数之内,读线程 B 正确的读取了 final 变量初始化之后的值。
写 final 域的重排序规则可以确保:在对象引用为任意线程可见之前,对象的 final 域已经被正确初始化过了,而普通域不具有这个保障。以上图为例,在读线程 B“看到”对象引用 obj 时,很可能 obj 对象还没有构造完成(对普通域 i 的写操作被重排序到构造函数外,此时初始值 2 还没有写入普通域 i)。
读 final 域的重排序规则如下:
初次读对象引用与初次读该对象包含的 final 域,这两个操作之间存在间接依赖关系。由于编译器遵守间接依赖关系,因此编译器不会重排序这两个操作。大多数处理器也会遵守间接依赖,大多数处理器也不会重排序这两个操作。但有少数处理器允许对存在间接依赖关系的操作做重排序(比如 alpha 处理器),这个规则就是专门用来针对这种处理器。
reader() 方法包含三个操作:
现在我们假设写线程 A 没有发生任何重排序,同时程序在不遵守间接依赖的处理器上执行,下面是一种可能的执行时序:
在上图中,读对象的普通域的操作被处理器重排序到读对象引用之前。读普通域时,该域还没有被写线程 A 写入,这是一个错误的读取操作。而读 final 域的重排序规则会把读对象 final 域的操作“限定”在读对象引用之后,此时该 final 域已经被 A 线程初始化过了,这是一个正确的读取操作。
读 final 域的重排序规则可以确保:在读一个对象的 final 域之前,一定会先读包含这个 final 域的对象的引用。在这个示例程序中,如果该引用不为 null,那么引用对象的 final 域一定已经被 A 线程初始化过了。
上面我们看到的 final 域是基础数据类型,下面让我们看看如果 final 域是引用类型,将会有什么效果?
请看下列示例代码:
public class FinalReferenceExample { final int[] intArray; //final 是引用类型 static FinalReferenceExample obj; public FinalReferenceExample () { // 构造函数 intArray = new int[1]; //1 intArray[0] = 1; //2 } public static void writerOne () { // 写线程 A 执行 obj = new FinalReferenceExample (); //3 } public static void writerTwo () { // 写线程 B 执行 obj.intArray[0] = 2; //4 } public static void reader () { // 读线程 C 执行 if (obj != null) { //5 int temp1 = obj.intArray[0]; //6 } } }
这里 final 域为一个引用类型,它引用一个 int 型的数组对象。对于引用类型,写 final 域的重排序规则对编译器和处理器增加了如下约束:
对上面的示例程序,我们假设首先线程 A 执行 writerOne() 方法,执行完后线程 B 执行 writerTwo() 方法,执行完后线程 C 执行 reader () 方法。下面是一种可能的线程执行时序:
在上图中,1 是对 final 域的写入,2 是对这个 final 域引用的对象的成员域的写入,3 是把被构造的对象的引用赋值给某个引用变量。这里除了前面提到的 1 不能和 3 重排序外,2 和 3 也不能重排序。
JMM 可以确保读线程 C 至少能看到写线程 A 在构造函数中对 final 引用对象的成员域的写入。即 C 至少能看到数组下标 0 的值为 1。而写线程 B 对数组元素的写入,读线程 C 可能看的到,也可能看不到。JMM 不保证线程 B 的写入对读线程 C 可见,因为写线程 B 和读线程 C 之间存在数据竞争,此时的执行结果不可预知。
如果想要确保读线程 C 看到写线程 B 对数组元素的写入,写线程 B 和读线程 C 之间需要使用同步原语(lock 或 volatile)来确保内存可见性。
https://www.infoq.cn/article/java-memory-model-6
https://www.jianshu.com/p/067b6c89875a
https://www.jianshu.com/p/f68d6ef2dcf0
https://www.cnblogs.com/xiaoxi/p/6392154.html
https://www.iteye.com/blog/cakin24-2334965
https://blog.csdn.net/chengqiuming/article/details/70139503
https://blog.csdn.net/hupuxiang/article/details/7362267
如果大家想要实时关注我更新的文章以及分享的干货的话,可以关注我的公众号【Java技术江湖】一位阿里 Java 工程师的技术小站,作者黄小斜,专注 Java 相关技术:SSM、SpringBoot、MySQL、分布式、中间件、集群、Linux、网络、多线程,偶尔讲点Docker、ELK,同时也分享技术干货和学习经验,致力于Java全栈开发!
Java工程师必备学习资源: 一些Java工程师常用学习资源,关注公众号后,后台回复关键字 “Java” 即可免费无套路获取。
作者是 985 硕士,蚂蚁金服 JAVA 工程师,专注于 JAVA 后端技术栈:SpringBoot、MySQL、分布式、中间件、微服务,同时也懂点投资理财,偶尔讲点算法和计算机理论基础,坚持学习和写作,相信终身学习的力量!
程序员3T技术学习资源: 一些程序员学习技术的资源大礼包,关注公众号后,后台回复关键字 “资料” 即可免费无套路获取。
夯实Java基础系列4:一文了解final关键字的特性、使用方法,以及实现原理
标签:exce example 运行时 问题 ima 直接 实现原理 依赖 system
原文地址:https://www.cnblogs.com/AliCoder/p/11594960.html