码迷,mamicode.com
首页 > Web开发 > 详细

WebGL简易教程(六):第一个三维示例(使用模型视图投影变换)

时间:2019-10-05 22:53:38      阅读:219      评论:0      收藏:0      [点我收藏+]

标签:har   使用   密码   lang   nload   页面   决定   ever   glcontext   

1. 概述

在上一篇教程《WebGL简易教程(五):图形变换(模型、视图、投影变换)》中,详细讲解了OpenGL\WebGL关于绘制场景的模型变换、视图变换以及投影变换的过程。不过那篇教程是纯理论知识,这里就具体结合一个实际的例子,进一步理解WebGL中是如何通过图形变换让一个真正的三维场景显示出来。

2. 示例:绘制多个三角形

继续改进之前的代码,这次就更进一步,在一个场景中绘制了三个三角形。

2.1. Triangle_MVPMatrix.html

<!DOCTYPE html>
<html lang="en">
  <head>
    <meta charset="utf-8" />
    <title>Hello Triangle</title>
  </head>

  <body onload="main()">
    <canvas id="webgl" width="400" height="400">
    Please use a browser that supports "canvas"
    </canvas>

    <script src="../lib/webgl-utils.js"></script>
    <script src="../lib/webgl-debug.js"></script>
    <script src="../lib/cuon-utils.js"></script>
    <script src="../lib/cuon-matrix.js"></script>
    <script src="Triangle_MVPMatrix.js"></script>
  </body>
</html>

与之间的代码相比,这段代码主要是引入了一个cuon-matrix.js,这个是一个图形矩阵的处理库,能够方便与GLSL进行交互。

2.2. Triangle_MVPMatrix.js

// 顶点着色器程序
var VSHADER_SOURCE =
  'attribute vec4 a_Position;\n' + // attribute variable
  'attribute vec4 a_Color;\n' +
  'uniform mat4 u_MvpMatrix;\n' +
  'varying vec4 v_Color;\n' +
  'void main() {\n' +
  '  gl_Position = u_MvpMatrix * a_Position;\n' + // Set the vertex coordinates of the point
  '  v_Color = a_Color;\n' +
  '}\n';

// 片元着色器程序
var FSHADER_SOURCE =
  'precision mediump float;\n' +
  'varying vec4 v_Color;\n' +
  'void main() {\n' +
  '  gl_FragColor = v_Color;\n' +
  '}\n';

function main() {
  // 获取 <canvas> 元素
  var canvas = document.getElementById('webgl');

  // 获取WebGL渲染上下文
  var gl = getWebGLContext(canvas);
  if (!gl) {
    console.log('Failed to get the rendering context for WebGL');
    return;
  }

  // 初始化着色器
  if (!initShaders(gl, VSHADER_SOURCE, FSHADER_SOURCE)) {
    console.log('Failed to intialize shaders.');
    return;
  }

  // 设置顶点位置
  var n = initVertexBuffers(gl);
  if (n < 0) {
    console.log('Failed to set the positions of the vertices');
    return;
  }

  //设置MVP矩阵
  setMVPMatrix(gl,canvas);

  // 指定清空<canvas>的颜色
  gl.clearColor(0.0, 0.0, 0.0, 1.0);

  // 开启深度测试
  gl.enable(gl.DEPTH_TEST);

  // 清空颜色和深度缓冲区
  gl.clear(gl.COLOR_BUFFER_BIT | gl.DEPTH_BUFFER_BIT);

  // 绘制三角形
  gl.drawArrays(gl.TRIANGLES, 0, n);
}

//设置MVP矩阵
function setMVPMatrix(gl,canvas) {
  // Get the storage location of u_MvpMatrix
  var u_MvpMatrix = gl.getUniformLocation(gl.program, 'u_MvpMatrix');
  if (!u_MvpMatrix) {
    console.log('Failed to get the storage location of u_MvpMatrix');
    return;
  }

  //模型矩阵
  var modelMatrix = new Matrix4();
  modelMatrix.setTranslate(0.75, 0, 0);

  //视图矩阵
  var viewMatrix = new Matrix4();  // View matrix
  viewMatrix.setLookAt(0, 0, 5, 0, 0, -100, 0, 1, 0);

  //投影矩阵
  var projMatrix = new Matrix4();  // Projection matrix
  projMatrix.setPerspective(30, canvas.width / canvas.height, 1, 100);

  //MVP矩阵
  var mvpMatrix = new Matrix4();
  mvpMatrix.set(projMatrix).multiply(viewMatrix).multiply(modelMatrix);

  //将MVP矩阵传输到着色器的uniform变量u_MvpMatrix
  gl.uniformMatrix4fv(u_MvpMatrix, false, mvpMatrix.elements);
}

//
function initVertexBuffers(gl) {
  // 顶点坐标和颜色
  var verticesColors = new Float32Array([
    0.0, 1.0, -4.0, 0.4, 1.0, 0.4,  //绿色在后
    -0.5, -1.0, -4.0, 0.4, 1.0, 0.4,
    0.5, -1.0, -4.0, 1.0, 0.4, 0.4,

    0.0, 1.0, -2.0, 1.0, 1.0, 0.4, //黄色在中
    -0.5, -1.0, -2.0, 1.0, 1.0, 0.4,
    0.5, -1.0, -2.0, 1.0, 0.4, 0.4,

    0.0, 1.0, 0.0, 0.4, 0.4, 1.0,  //蓝色在前
    -0.5, -1.0, 0.0, 0.4, 0.4, 1.0,
    0.5, -1.0, 0.0, 1.0, 0.4, 0.4,
  ]);

  //
  var n = 9; // 点的个数
  var FSIZE = verticesColors.BYTES_PER_ELEMENT;   //数组中每个元素的字节数

  // 创建缓冲区对象
  var vertexBuffer = gl.createBuffer();
  if (!vertexBuffer) {
    console.log('Failed to create the buffer object');
    return -1;
  }

  // 将缓冲区对象绑定到目标
  gl.bindBuffer(gl.ARRAY_BUFFER, vertexBuffer);
  // 向缓冲区对象写入数据
  gl.bufferData(gl.ARRAY_BUFFER, verticesColors, gl.STATIC_DRAW);

  //获取着色器中attribute变量a_Position的地址 
  var a_Position = gl.getAttribLocation(gl.program, 'a_Position');
  if (a_Position < 0) {
    console.log('Failed to get the storage location of a_Position');
    return -1;
  }
  // 将缓冲区对象分配给a_Position变量
  gl.vertexAttribPointer(a_Position, 3, gl.FLOAT, false, FSIZE * 6, 0);

  // 连接a_Position变量与分配给它的缓冲区对象
  gl.enableVertexAttribArray(a_Position);

  //获取着色器中attribute变量a_Color的地址 
  var a_Color = gl.getAttribLocation(gl.program, 'a_Color');
  if (a_Color < 0) {
    console.log('Failed to get the storage location of a_Color');
    return -1;
  }
  // 将缓冲区对象分配给a_Color变量
  gl.vertexAttribPointer(a_Color, 3, gl.FLOAT, false, FSIZE * 6, FSIZE * 3);
  // 连接a_Color变量与分配给它的缓冲区对象
  gl.enableVertexAttribArray(a_Color);

  // 解除绑定
  gl.bindBuffer(gl.ARRAY_BUFFER, null);

  return n;
}

相比之前的代码,主要做了3点改进:

  1. 数据加入Z值;
  2. 加入了深度测试;
  3. MVP矩阵设置;

2.2.1. 数据加入Z值

之前绘制的三角形,只有X坐标和Y坐标,Z值坐标自动补足为默认为0的。在这里会绘制了3个三角形,每个三角形的深度不同。如下代码所示,定义了3个三角形9个点,每个点包含xyz信息和rgb信息:

  // 顶点坐标和颜色
  var verticesColors = new Float32Array([
    0.0, 1.0, -4.0, 0.4, 1.0, 0.4,  //绿色在后
    -0.5, -1.0, -4.0, 0.4, 1.0, 0.4,
    0.5, -1.0, -4.0, 1.0, 0.4, 0.4,

    0.0, 1.0, -2.0, 1.0, 1.0, 0.4, //黄色在中
    -0.5, -1.0, -2.0, 1.0, 1.0, 0.4,
    0.5, -1.0, -2.0, 1.0, 0.4, 0.4,

    0.0, 1.0, 0.0, 0.4, 0.4, 1.0,  //蓝色在前
    -0.5, -1.0, 0.0, 0.4, 0.4, 1.0,
    0.5, -1.0, 0.0, 1.0, 0.4, 0.4,
  ]);

这意味着与着色器传输变量的函数gl.vertexAttribPointer()的参数也得相应的变化。注意要深入理解这个函数每个参数代表的含义:

  // ...

  // 将缓冲区对象分配给a_Position变量
  gl.vertexAttribPointer(a_Position, 3, gl.FLOAT, false, FSIZE * 6, 0);

  // ...
  // 将缓冲区对象分配给a_Color变量
  gl.vertexAttribPointer(a_Color, 3, gl.FLOAT, false, FSIZE * 6, FSIZE * 3);

2.2.2. 加入深度测试

在默认情况下,WebGL是根据顶点在缓冲区的顺序来进行绘制的,后绘制的图形会覆盖已经绘制好的图形。但是这样往往与实际物体遮挡情况不同,造成一些很怪异的现象,比如远的物体反而遮挡了近的物体。所以WebGL提供了一种深度检测(DEPTH_TEST)的功能,启用该功能就会检测物体(实际是每个像素)的深度,来决定是否绘制。其启用函数为:
技术图片
除此之外,还应该注意在绘制每一帧之前都应该清除深度缓冲区(depth buffer)。WebGL有多种缓冲区。我们之前用到的与顶点着色器交互的缓冲区对象就是顶点缓冲区,每次重新绘制刷新的就是颜色缓冲区。深度缓冲区记录的就是每个几何图形的深度信息,每绘制一帧,都应清除深度缓冲区:
技术图片
在本例中的相关代码为:

  // ...

  // 开启深度测试
  gl.enable(gl.DEPTH_TEST);

  // 清空颜色和深度缓冲区
  gl.clear(gl.COLOR_BUFFER_BIT | gl.DEPTH_BUFFER_BIT);

  // ...

2.2.3. MVP矩阵设置

在上一篇教程中提到过,WebGL的任何图形变换过程影响的都是物体的顶点,模型变换、视图变换、投影变换都是在顶点着色器中实现的。由于每个顶点都是要进行模型视图投影变换的,所以可以合并成一个MVP矩阵,将其传入到顶点着色器中的:

  //...
  'uniform mat4 u_MvpMatrix;\n' +  
  'void main() {\n' +
  '  gl_Position = u_MvpMatrix * a_Position;\n' + // Set the vertex coordinates of the point 
  //...
  '}\n';

在函数setMVPMatrix()中,创建了MVP矩阵,并将其传入到着色器:

//设置MVP矩阵
function setMVPMatrix(gl,canvas) {
  // Get the storage location of u_MvpMatrix
  var u_MvpMatrix = gl.getUniformLocation(gl.program, 'u_MvpMatrix');
  if (!u_MvpMatrix) {
    console.log('Failed to get the storage location of u_MvpMatrix');
    return;
  }

  //模型矩阵
  var modelMatrix = new Matrix4();
  modelMatrix.setTranslate(0.75, 0, 0);

  //视图矩阵
  var viewMatrix = new Matrix4();  // View matrix
  viewMatrix.setLookAt(0, 0, 5, 0, 0, -100, 0, 1, 0);

  //投影矩阵
  var projMatrix = new Matrix4();  // Projection matrix
  projMatrix.setPerspective(30, canvas.width / canvas.height, 1, 100);

  //MVP矩阵
  var mvpMatrix = new Matrix4();
  mvpMatrix.set(projMatrix).multiply(viewMatrix).multiply(modelMatrix);

  //将MVP矩阵传输到着色器的uniform变量u_MvpMatrix
  gl.uniformMatrix4fv(u_MvpMatrix, false, mvpMatrix.elements);
}

在上述代码中,依次分别设置了:

  • 模型矩阵:X方向上平移了0.75个单位。
  • 视图矩阵:视点为(0,0,5),观察点为(0,0,-100),上方向为(0,1,0)的观察视角。
  • 投影矩阵:垂直张角为30,画图视图的宽高比,近截面距离为1,远截面为100的视锥体。

三者级联,得到MVP矩阵,将其传入到顶点着色器中。

3. 结果

用浏览器打开Triangle_MVPMatrix.html,就会发现浏览器页面显示了一个由远及近,近大远小的三个三角形。如图所示:
技术图片

4. 参考

本来部分代码和插图来自《WebGL编程指南》,源代码链接:https://share.weiyun.com/5VjlUKo ,密码:sw0x2x。会在此共享目录中持续更新后续的内容。

WebGL简易教程(六):第一个三维示例(使用模型视图投影变换)

标签:har   使用   密码   lang   nload   页面   决定   ever   glcontext   

原文地址:https://www.cnblogs.com/charlee44/p/11625869.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!