码迷,mamicode.com
首页 > 编程语言 > 详细

C语言基础之进制的那些事(1)

时间:2019-10-21 10:03:40      阅读:116      评论:0      收藏:0      [点我收藏+]

标签:str   inf   www   class   计算   十六进制   bsp   超过   href   

为什么会有不同的进制?

计算机采用二进制主要是为了方便硬件的实现,电流的通、断,或电压的高、低正好能够表示二进制的0和1两个数码。二进制好处分述如下:
一、可行性:若使用十进制数,则需要这样的电子器件,它必须有能表示0—9数码的10个物理状态,这在技术上是相当困难的(目前为止没有完全解决),而使用二进制数,只需0,1两个状态,技术上轻而易举,如开关的通与断,晶体管中导通与截止等,磁介质的带磁与不带磁。
二、可靠性:二进制只有两种状态,数字传输处理不易出错。
三、简易性:二进制运算法则比较简单,数值、图形、文字等各种形式的信息,需要计算机加工处理时,首先必须按一定的法则转换成二进制数.

用二进制数表示一个数值时,位数比较长,不便书写和记忆,所以人们常用八进制数十六进制数十进制数来表示二进制数.

二进制

范围:0、1

性质:逢二进一

八进制

范围:0、1、2、3、4、5、6、7

性质:逢八进一

十进制

范围:0、1、2、3、4、5、6、7、8、9

性质:逢十进一

十六进制

范围:0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F

性质:逢十六进一

 

进制之间怎么相互转换?

首先我们来看一个除法公式,从这个除法我们可以得出余数的求法。

余数   =   被除数     -  (商 * 除数)

3        =   23            -    (4   * 5)

技术图片

高进制转低进制采用辗转相除法

低进制转高进制采用权相加法

十进制数和十六进制数采用8421码翻译成二进制数(适用于15以内的数,如果超过15就需要拆分成15以内的数之和再进行二进制运算)

 

十进制转换成2进制

100(10)转换成二进制:100 / 2 = 50....余0、50 / 2 = 25....余0、25 / 2 = 12....余1、12 / 2 = 6....余0、6 / 2 = 3....余0、3 / 2 = 1....余1、1 / 2 = 0....余1。

十进制转换成二进制:采用的是辗转相除法,十进制数除以2其得到的商继续除以2直到商为0为止,然后再将得到的余数倒叙排列就是二进制对应的十进制数。比如十进制数100转换成二进制数为1100100。

那么逢二进一又是什么意思?又怎么具体使用呢?

比如十进制数9用二进制数表示:二进制数运算规则是逢二进一,二进制数表示只有数字0和1。

将十进制数9拆分为(1+1) +(1+1) +(1+1) +(1+1) +1  =  10 + 10 + 10 + 10 + 1 

其中的(1+1)= 10 就是采用二进制的逢二进一运算规则。

后面的10 + 10 + 10 + 10 + 1 = 10 + 10 + 10 + 10 + 01涉及到二进制的加法,二进制的加法规则很简单,低位和低位相加,高位和高位相加,配合二进制的逢二进一运算规则可以得出最后的答案:(10 + 10) + (10 + 10) + 01 = 100 + 100 + 01 = 1000 + 01 = 1001。

确实上面的十进制数和十六进制数可以采用8421规则得出相应的二进制数,8421码对应着4位二进制数,8对应千位、4对应百位、2对应十位、1对应个位,比如上面的十进制数9按照8421码规则可以很轻松写出其二进制数1001,再比如十六进制数F变化成二进制就是四个1,F(16) = 1111(2)。

高进制转低进制请参照十进制转二进制的方法。

二进制转十进制

 


 

 

口诀:整数二进制用数值乘以2的幂次依次相加,小数二进制用数值乘以2的负幂次然后依次相加。

 

1、整数二进制转换为十进制:首先将二进制数补齐位数,首位如果是0就代表是正整数,如果首位是1则代表是负整数。

技术图片

 

 若二进制补足位数后首位为1时,如下图所示,就需要先取反再换算:

技术图片

 2、小数的二进制转换为十进制:将二进制中的四位小数分别于下边(如下图所示)对应的值相乘后相加得到的值即为换算后的十进制

 技术图片

 

C语言基础之进制的那些事(1)

标签:str   inf   www   class   计算   十六进制   bsp   超过   href   

原文地址:https://www.cnblogs.com/iBoundary/p/11710467.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!