标签:pickle序列化 要求 优点 href 基础 false 优先级队列 共享数据 random
本文内容是基于如下参考资料。是对如下参考资料的梳理并加上自己的理解。
http://www.runoob.com/python3/python3-multithreading.html
一个任务就是一个进程(Process)
进程内的这些“子任务”称为线程(Thread)。
由于任务数量远远多于CPU的核心数量,所以,操作系统也会自动把很多任务(多进程)轮流调度到每个核心上执行。让每个线程都短暂地交替运行,看起来就像同时执行一样。
多个线程由操作系统在多个线程之间快速切换,让每个线程都短暂地交替运行,看起来就像同时执行一样。
自己编程中多任务的实现有3种方式(多任务既可以多线程实现也可以多进程实现):
同时执行多个任务通常各个任务之间是有关联的(无论是进程还是线程),需要相互通信和协调,涉及到同步、数据共享的问题。
常见多任务协调要求:
fork()
调用Unix/Linux操作系统提供了一个fork()
系统调用,fork()
调用一次,返回两次,因为操作系统自动把当前进程(称为父进程)复制了一份(称为子进程),然后,分别在父进程和子进程内返回。子进程永远返回0
,而父进程返回子进程的ID。父进程要记下每个子进程的ID,而子进程只需要调用getppid()
就可以拿到父进程的ID。
Python的os
模块封装了fork
。
fork
只支持Linux,Mac不支持window
任务分工:从os.fork()
往下的代码,父进程和子进程同时执行
import os
print('Process (%s) start...' % os.getpid())
# Only works on Unix/Linux/Mac:
pid = os.fork()
# 从这往下的代码,父进程和子进程同时执行
if pid == 0:
print('I am child process (%s) and my parent is %s.' % (os.getpid(), os.getppid()))
else:
print('I (%s) just created a child process (%s).' % (os.getpid(), pid))
运行结果如下:
Process (876) start...
I (876) just created a child process (877).
I am child process (877) and my parent is 876.
有了fork
调用,一个进程在接到新任务时就可以复制出一个子进程来处理新任务。
multiprocessing
模块就是跨平台版本的多进程模块。
Precess
类一次开一个新进程multiprocessing
模块提供了一个Process
类来代表一个进程对象
任务分工:父进程执行主程序代码,子进程只执行Process类中target所指向的函数中的代码
arg
s用来给子程序传递参数
from multiprocessing import Process
import os
# 子进程要执行的代码
def run_proc(name):
print('Run child process %s (%s)...' % (name, os.getpid()))
if __name__=='__main__':
print('Parent process %s.' % os.getpid())
p = Process(target=run_proc, args=('test',))
print('Child process will start.')
p.start()
p.join()
print('Child process end.')
执行结果如下:
Parent process 928.
Process will start.
Run child process test (929)...
Process end.
创建子进程时,只需要传入一个执行函数和函数的参数,创建一个Process
实例,用start()
方法启动,这样创建进程比fork()
还要简单。
join()
方法可以等待子进程结束后再继续往下运行,通常用于进程间的同步。
Pool
类一次开多个进程如果要启动大量的子进程,可以用进程池的方式批量创建子进程:
任务分工:父进程执行主程序代码,每个子进程执行Pool类的apply_async
方法中所指定的函数的代码
args
用来给子程序传递参数
from multiprocessing import Pool
import os, time, random
def long_time_task(name):
print('Run task %s (%s)...' % (name, os.getpid()))
start = time.time()
time.sleep(random.random() * 3)
end = time.time()
print('Task %s runs %0.2f seconds.' % (name, (end - start)))
if __name__=='__main__':
print('Parent process %s.' % os.getpid())
p = Pool(4)
for i in range(5):
p.apply_async(long_time_task, args=(i,))
print('Waiting for all subprocesses done...')
p.close()
p.join()
print('All subprocesses done.')
执行结果如下:
Parent process 669.
Waiting for all subprocesses done...
Run task 0 (671)...
Run task 1 (672)...
Run task 2 (673)...
Run task 3 (674)...
Task 2 runs 0.14 seconds.
Run task 4 (673)...
Task 1 runs 0.27 seconds.
Task 3 runs 0.86 seconds.
Task 0 runs 1.41 seconds.
Task 4 runs 1.91 seconds.
All subprocesses done.
代码解读:
对Pool
对象调用join()
方法会等待所有子进程执行完毕,调用join()
之前必须先调用close()
,调用close()
之后就不能继续添加新的Process
了。
请注意输出的结果,task 0
,1
,2
,3
是立刻执行的,而task 4
要等待前面某个task完成后才执行,这是因为Pool
的默认大小在我的电脑上是4,因此,最多同时执行4个进程。这是Pool
有意设计的限制,并不是操作系统的限制。如果改成:
p = Pool(5)
就可以同时跑5个进程。
由于Pool
的默认大小是CPU的核数,如果你不幸拥有8核CPU,你要提交至少9个子进程才能看到上面的等待效果。
multiprocessing模块以及fork()
都是在一个python脚本中实现的不同进程的代码并控制不同进程的开启与关闭。但是有时子进程可能和父进程不在一个脚本,这时子进程属于外部进程
子进程是不是外部进程应该本质都是一样的,都不共享内存,不共享全局变量。子进程不能改变主进程中全局变量的值。如果要共享全局变量需要做其他处理。
很多时候,子进程并不是自身,而是一个外部进程。我们创建了子进程后,还需要控制子进程的输入和输出。
subprocess
模块可以让我们非常方便地启动一个子进程,然后控制其输入和输出。
以下是通过subprocess
模块执行一个系统指令(能执行系统指令,自然能再运行一个python脚本)
import subprocess
print('$ nslookup www.python.org')
r = subprocess.call(['nslookup', 'www.python.org'])
print('Exit code:', r)
运行结果:
$ nslookup www.python.org
Server: 192.168.19.4
Address: 192.168.19.4#53
Non-authoritative answer:
www.python.org canonical name = python.map.fastly.net.
Name: python.map.fastly.net
Address: 199.27.79.223
Exit code: 0
如果子进程还需要输入,则可以通过communicate()
方法输入:
import subprocess
print('$ nslookup')
p = subprocess.Popen(['nslookup'], stdin=subprocess.PIPE, stdout=subprocess.PIPE, stderr=subprocess.PIPE)
output, err = p.communicate(b'set q=mx\npython.org\nexit\n')
print(output.decode('utf-8'))
print('Exit code:', p.returncode)
上面的代码相当于在命令行执行命令nslookup
,然后手动输入:
set q=mx
python.org
exit
运行结果如下:
$ nslookup
Server: 192.168.19.4
Address: 192.168.19.4#53
Non-authoritative answer:
python.org mail exchanger = 50 mail.python.org.
Authoritative answers can be found from:
mail.python.org internet address = 82.94.164.166
mail.python.org has AAAA address 2001:888:2000:d::a6
Exit code: 0
这里的进程之间的通信应该即适合一个脚本开两个进程也适合两个脚本开两个进程的情况。
Process
之间肯定是需要通信的,操作系统提供了很多机制来实现进程间的通信。Python的multiprocessing
模块包装了底层的机制,提供了Queue
、Pipes
等多种方式来交换数据。
我们以Queue
为例,在父进程中创建两个子进程,一个往Queue
里写数据,一个从Queue
里读数据:
from multiprocessing import Process, Queue
import os, time, random
# 写数据进程执行的代码:
def write(q):
print('Process to write: %s' % os.getpid())
for value in ['A', 'B', 'C']:
print('Put %s to queue...' % value)
q.put(value)
time.sleep(random.random())
# 读数据进程执行的代码:
def read(q):
print('Process to read: %s' % os.getpid())
while True:
value = q.get(True)
print('Get %s from queue.' % value)
if __name__=='__main__':
# 父进程创建Queue,并传给各个子进程:
q = Queue()
pw = Process(target=write, args=(q,))
pr = Process(target=read, args=(q,))
# 启动子进程pw,写入:
pw.start()
# 启动子进程pr,读取:
pr.start()
# 等待pw结束:
pw.join()
# pr进程里是死循环,无法等待其结束,只能强行终止:
pr.terminate()
运行结果如下:
Process to write: 50563
Put A to queue...
Process to read: 50564
Get A from queue.
Put B to queue...
Get B from queue.
Put C to queue...
Get C from queue.
在Unix/Linux下,multiprocessing
模块封装了fork()
调用,使我们不需要关注fork()
的细节。由于Windows没有fork
调用,因此,multiprocessing
需要“模拟”出fork
的效果,父进程所有Python对象都必须通过pickle序列化再传到子进程去,所有,如果multiprocessing
在Windows下调用失败了,要先考虑是不是pickle失败了。
多任务可以由多进程完成,也可以由一个进程内的多线程完成。
每个独立的线程有一个程序运行的入口、顺序执行序列和程序的出口。但是线程不能够独立执行,必须依存在应用程序中,由应用程序提供多个线程执行控制。每个线程都有他自己的一组CPU寄存器,称为线程的上下文,该上下文反映了线程上次运行该线程的CPU寄存器的状态。
指令指针和堆栈指针寄存器是线程上下文中两个最重要的寄存器,线程总是在进程得到上下文中运行的,这些地址都用于标志拥有线程的进程地址空间中的内存。
线程可以分为:
线程是操作系统直接支持的执行单元,高级语言通常都内置多线程的支持,Python的线程是真正的Posix Thread,而不是模拟出来的线程。
threading
模块与它的Thread类Python的标准库提供了两个模块:_thread
和threading
,_thread
是低级模块,threading
是高级模块,对_thread
进行了封装。绝大多数情况下,我们只需要使用threading
这个高级模块,而threading
模块的关键就是Tread类
threading.currentThread(): 返回当前的线程变量。
threading.enumerate(): 返回一个包含正在运行的线程的list。正在运行指线程启动后、结束前,不包括启动前和终止后的线程。
threading.activeCount(): 返回正在运行的线程数量,与len(threading.enumerate())有相同的结果。
除了使用方法外,线程模块同样主要提供了Thread类来处理线程,Thread类提供了以下方法:
run(): 用以表示线程活动的方法。
start():启动线程活动。
join([time]): 等待至线程中止。这阻塞调用线程直至线程的join() 方法被调用中止-正常退出或者抛出未处理的异常-或者是可选的超时发生。
isAlive(): 返回线程是否活动的。
getName(): 返回线程名。
setName(): 设置线程名。
启动一个新线程有两种方式:
一种方式是将要执行的线程代码写在一个函数里,将该函数名作为Thread类的一个初始化参数来使用。(这种方式较容易使用)
另一种方式是继承Thread类,然后重写Thread类中的run()
方法,将要执行的线程代码写在run()
方法中。(这种方式见菜鸟教程)
启动一个线程就是把一个函数传入并创建Thread
实例,然后调用start()
开始执行:
import time, threading
# 新线程执行的代码:
def loop():
print('thread %s is running...' % threading.current_thread().name)
n = 0
while n < 5:
n = n + 1
print('thread %s >>> %s' % (threading.current_thread().name, n))
time.sleep(1)
print('thread %s ended.' % threading.current_thread().name)
print('thread %s is running...' % threading.current_thread().name)
t = threading.Thread(target=loop, name='LoopThread')
t.start()
t.join()
print('thread %s ended.' % threading.current_thread().name)
执行结果如下:
thread MainThread is running...
thread LoopThread is running...
thread LoopThread >>> 1
thread LoopThread >>> 2
thread LoopThread >>> 3
thread LoopThread >>> 4
thread LoopThread >>> 5
thread LoopThread ended.
thread MainThread ended.
由于任何进程默认就会启动一个线程,我们把该线程称为主线程,主线程又可以启动新的线程,Python的threading
模块有个current_thread()
函数,它永远返回当前线程的实例。主线程实例的名字叫MainThread
,子线程的名字在创建时指定,我们用LoopThread
命名子线程。名字仅仅在打印时用来显示,完全没有其他意义,如果不起名字Python就自动给线程命名为Thread-1
,Thread-2
……
多线程和多进程最大的不同在于,多进程中,同一个变量,各自有一份拷贝存在于每个进程中,互不影响,而多线程中,所有变量都由所有线程共享,所以,任何一个变量都可以被任何一个线程修改,因此,线程之间共享数据最大的危险在于多个线程同时改一个变量,把内容给改乱了。(就是多进程不共享内存,过线程共享内存)。
来看看多个线程同时操作一个变量怎么把内容给改乱了:
import time, threading
# 假定这是你的银行存款:
balance = 0
def change_it(n):
# 先存后取,结果应该为0:
global balance
balance = balance + n
balance = balance - n
def run_thread(n):
for i in range(100000):
change_it(n)
t1 = threading.Thread(target=run_thread, args=(5,))
t2 = threading.Thread(target=run_thread, args=(8,))
t1.start()
t2.start()
t1.join()
t2.join()
print(balance)
我们定义了一个共享变量balance
(就是作用域包含各个线程的函数),初始值为0
,并且启动两个线程,先存后取,理论上结果应该为0
,但是,由于线程的调度是由操作系统决定的,当t1、t2交替执行时,只要循环次数足够多,balance
的结果就不一定是0
了。
原因是因为高级语言的一条语句在CPU执行时是若干条语句,即使一个简单的计算:
balance = balance + n
也分两步:
balance + n
,存入临时变量中;balance
。也就是可以看成:
x = balance + n
balance = x
由于x是局部变量,两个线程各自都有自己的x,当代码正常执行时:
初始值 balance = 0
t1: x1 = balance + 5 # x1 = 0 + 5 = 5
t1: balance = x1 # balance = 5
t1: x1 = balance - 5 # x1 = 5 - 5 = 0
t1: balance = x1 # balance = 0
t2: x2 = balance + 8 # x2 = 0 + 8 = 8
t2: balance = x2 # balance = 8
t2: x2 = balance - 8 # x2 = 8 - 8 = 0
t2: balance = x2 # balance = 0
结果 balance = 0
但是t1和t2是交替运行的,如果操作系统以下面的顺序执行t1、t2:
初始值 balance = 0
t1: x1 = balance + 5 # x1 = 0 + 5 = 5
t2: x2 = balance + 8 # x2 = 0 + 8 = 8
t2: balance = x2 # balance = 8
t1: balance = x1 # balance = 5
t1: x1 = balance - 5 # x1 = 5 - 5 = 0
t1: balance = x1 # balance = 0
t2: x2 = balance - 8 # x2 = 0 - 8 = -8
t2: balance = x2 # balance = -8
结果 balance = -8
究其原因,是因为修改balance
需要多条语句,而执行这几条语句时,线程可能中断,从而导致多个线程把同一个对象的内容改乱了。或者就是不考虑balance = balance + n
的分开计算,两个线程一会加一会减也会搞乱balance的值。
所以,有时,我们必须确保一个线程在修改balance
的时候,别的线程一定不能改。如果我们要确保balance
计算正确,就要给change_it()
这个子线程函数上一把锁。
当某个线程开始执行change_it()
时,我们说,该线程因为获得了锁,因此其他线程不能同时执行change_it()
,只能等待,直到锁被释放后,获得该锁以后才能改。由于锁只有一个,无论多少线程,同一时刻最多只有一个线程持有该锁,所以,不会造成修改的冲突。创建一个锁就是通过threading.Lock()
来实现:
balance = 0
lock = threading.Lock()
def run_thread(n):
for i in range(100000):
# 先要获取锁:
lock.acquire()
try:
# 放心地改吧:
change_it(n)
finally:
# 改完了一定要释放锁:
lock.release()
当多个线程同时执行lock.acquire()
时,只有一个线程能成功地获取锁,然后继续执行代码,其他线程就继续等待直到获得锁为止。
获得锁的线程用完后一定要释放锁,否则那些苦苦等待锁的线程将永远等待下去,成为死线程。所以我们用try...finally
来确保锁一定会被释放。
锁的好处就是确保了某段关键代码只能由一个线程从头到尾完整地执行,坏处当然也很多,首先是阻止了多线程并发执行,包含锁的某段代码实际上只能以单线程模式执行,效率就大大地下降了。其次,由于可以存在多个锁,不同的线程持有不同的锁,并试图获取对方持有的锁时,可能会造成死锁,导致多个线程全部挂起,既不能执行,也无法结束,只能靠操作系统强制终止。
真正的多线程应该能够分别在多核上同时运行。
理论上真正的多线程与多核CPU的关系:
但是启动与CPU核心数量相同的N个线程,在4核CPU上可以监控到CPU占用率仅有102%,也就是仅使用了一核。
如果用C、C++或Java来改写相同的死循环,直接可以把全部核心跑满,4核就跑到400%,8核就跑到800%
Python真实的多线程与多核CPU关系处理规则:
Python的线程虽然是真正的线程,但解释器执行代码时,有一个GIL锁:Global Interpreter Lock,任何Python线程执行前,必须先获得GIL锁,然后,每执行100条字节码,解释器就自动释放GIL锁,让别的线程有机会执行。这个GIL全局锁实际上把所有线程的执行代码都给上了锁,所以,多线程在Python中只能交替执行,即使100个线程跑在100核CPU上,也只能用到1个核。
所以,在Python中,可以使用多线程,但不要指望能有效利用多核。如果一定要通过多线程利用多核,那只能通过C扩展来实现,不过这样就失去了Python简单易用的特点。
不过,也不用过于担心,Python虽然不能利用多线程实现多核任务,但可以通过多进程实现多核任务。多个Python进程有各自独立的GIL锁,互不影响。
ThreadLocal
在多线程环境下,每个线程都有自己的数据。一个线程使用自己的局部变量比使用全局变量好,因为局部变量只有线程自己能看见,不会影响其他线程,而全局变量的修改必须加锁。
但是局部变量也有问题,就是在函数调用的时候,传递起来很麻烦:
def process_student(name):
std = Student(name)
# std是局部变量,但是每个函数都要用它,因此必须传进去:
do_task_1(std)
do_task_2(std)
def do_task_1(std):
do_subtask_1(std)
do_subtask_2(std)
def do_task_2(std):
do_subtask_2(std)
do_subtask_2(std)
每个函数一层一层调用都这么传参数那还得了?用全局变量?也不行,因为每个线程处理不同的Student
对象,不能共享。
如果用一个全局dict
存放所有的Student
对象,然后以thread
自身作为key
获得线程对应的Student
对象如何?
global_dict = {}
def std_thread(name):
std = Student(name)
# 把std放到全局变量global_dict中:
global_dict[threading.current_thread()] = std
do_task_1()
do_task_2()
def do_task_1():
# 不传入std,而是根据当前线程查找:
std = global_dict[threading.current_thread()]
...
def do_task_2():
# 任何函数都可以查找出当前线程的std变量:
std = global_dict[threading.current_thread()]
...
这种方式理论上是可行的,它最大的优点是消除了std
对象在每层函数中的传递问题,但是,每个函数获取std
的代码有点丑。
ThreadLocal
应运而生,不用查找dict
,ThreadLocal
帮你自动做这件事:
ThreadLocal
的作用是让一个线程的所有调用到的处理函数都可以非常方便地访问这些资源,将ThreadLocal
对象作为全局变量以后,ThreadLocal
对象可以让用户自己定义的属性,这些用户定义的属性就相当于变量。这些属性会为每个线程建立自己的备份,让每个线程之间读写同一个ThreadLocal
对象的自定义属性而不相互影响。其作用相当于为每个线程建立属于自己的全局变量,这样每个线程既方便使用全局变量又不会无序修改同一个全局变量。
import threading
# 创建全局ThreadLocal对象:
local_school = threading.local()
def process_student():
# 获取当前线程关联的student:
std = local_school.student
print('Hello, %s (in %s)' % (std, threading.current_thread().name))
def process_thread(name):
# 绑定ThreadLocal的student:
local_school.student = name
process_student()
t1 = threading.Thread(target= process_thread, args=('Alice',), name='Thread-A')
t2 = threading.Thread(target= process_thread, args=('Bob',), name='Thread-B')
t1.start()
t2.start()
t1.join()
t2.join()
执行结果:
Hello, Alice (in Thread-A)
Hello, Bob (in Thread-B)
全局变量local_school
就是一个ThreadLocal
对象,每个Thread
对它都可以读写student
属性,但互不影响。你可以把local_school
看成全局变量,但每个属性如local_school.student
都是线程的局部变量,可以任意读写而互不干扰,也不用管理锁的问题,ThreadLocal
内部会处理。
可以理解为全局变量local_school
是一个dict
,不但可以用local_school.student
,还可以绑定其他变量,如local_school.teacher
等等。
ThreadLocal
最常用的地方就是为每个线程绑定一个数据库连接,HTTP请求,用户身份信息等,这样一个线程的所有调用到的处理函数都可以非常方便地访问这些资源。
实现多任务,其中一个常用的结构是Master-Worker模式,Master负责分配任务,Worker负责执行任务,因此,多任务环境下,通常是一个Master,多个Worker。
如果用多进程实现Master-Worker,主进程就是Master,其他进程就是Worker。
如果用多线程实现Master-Worker,主线程就是Master,其他线程就是Worker。
多进程模式最大的优点就是稳定性高,因为一个子进程崩溃了,不会影响主进程和其他子进程。(当然主进程挂了所有进程就全挂了,但是Master进程只负责分配任务,挂掉的概率低)著名的Apache最早就是采用多进程模式。
多进程模式的缺点是创建进程的代价大,在Unix/Linux系统下,用fork
调用还行,在Windows下创建进程开销巨大。另外,操作系统能同时运行的进程数也是有限的,在内存和CPU的限制下,如果有几千个进程同时运行,操作系统连调度都会成问题。
多线程模式通常比多进程快一点,但是也快不到哪去,而且,多线程模式致命的缺点就是任何一个线程挂掉都可能直接造成整个进程崩溃,因为所有线程共享进程的内存。其实往往是某个线程出了问题,但是操作系统会强制结束整个进程。
在Windows下,多线程的效率比多进程要高,但是稳定性不行。
无论是多进程还是多线程,只要数量一多,效率肯定上不去。
操作系统在切换进程或者线程时,它需要先保存当前执行的现场环境(CPU寄存器状态、内存页等),然后,把新任务的执行环境准备好(恢复上次的寄存器状态,切换内存页等),才能开始执行。这个切换过程虽然很快,但是也需要耗费时间。如果有几千个任务同时进行,操作系统可能就主要忙着切换任务,根本没有多少时间去执行任务了,这种情况最常见的就是硬盘狂响,点窗口无反应,系统处于假死状态。
所以,多任务一旦多到一个限度,就会消耗掉系统所有的资源,结果效率急剧下降,所有任务都做不好。
是否采用多任务的第二个考虑是任务的类型。我们可以把任务分为计算密集型和IO密集型。
计算密集型任务的特点是要进行大量的计算,主要消耗CPU资源,比如计算圆周率、对视频进行高清解码等等,全靠CPU的运算能力。这种任务越多,花在任务切换的时间就越多,CPU执行任务的效率就越低,所以,要最高效地利用CPU,计算密集型任务同时进行的数量应当等于CPU的核心数。对于计算密集型任务,最好用C语言编写,因为它们对代码运行效率要求很高。
第二种任务的类型是IO密集型,涉及到网络、磁盘IO的任务都是IO密集型任务,比如Web应用,这类任务的特点是CPU消耗很少,任务的大部分时间都在等待IO操作完成(因为IO的速度远远低于CPU和内存的速度)。对于IO密集型任务,任务越多,CPU效率越高,但也有一个限度。对于IO密集型任务,最合适的语言就是开发效率最高(代码量最少)的语言,脚本语言是首选,C语言最差,因为99%的时间都花在IO上运行速度极快的C语言完全无法提升运行效率。
现代操作系统对IO操作已经做了巨大的改进,最大的特点就是支持异步IO。如果充分利用操作系统提供的异步IO支持,就可以用单进程单线程模型来执行多任务,这种全新的模型称为事件驱动模型。在多核CPU上,可以运行多个进程(数量与CPU核心数相同),充分利用多核CPU。由于系统总的进程数量十分有限,因此操作系统调度非常高效。用异步IO编程模型来实现多任务是一个主要的趋势。
对应到Python语言,单线程的异步编程模型称为协程,有了协程的支持,就可以基于事件驱动编写高效的多任务程序。我们会在后面讨论如何编写协程
在Thread和Process中,应当优选Process,因为Process更稳定,而且,Process可以分布到多台机器上,而Thread最多只能分布到同一台机器的多个CPU上
Python的multiprocessing
模块不但支持多进程,其中managers
子模块还支持把多进程分布到多台机器上。一个服务进程可以作为调度者,将任务分布到其他多个进程中,依靠网络通信。由于managers
模块封装很好,不必了解网络通信的细节,就可以很容易地编写分布式多进程程序。
举个例子:如果我们已经有一个通过Queue
通信的多进程程序在同一台机器上运行,现在,由于处理任务的进程任务繁重,希望把发送任务的进程和处理任务的进程分布到两台机器上。怎么用分布式进程实现?
原有的Queue
可以继续使用,但是,通过managers
模块把Queue
通过网络暴露出去,就可以让其他机器的进程访问Queue
了。
我们先看服务进程,服务进程负责启动Queue
,把Queue
注册到网络上,然后往Queue
里面写入任务:
# task_master.py
import random, time, queue
from multiprocessing.managers import BaseManager
# 发送任务的队列:
task_queue = queue.Queue()
# 接收结果的队列:
result_queue = queue.Queue()
# 从BaseManager继承的QueueManager:
class QueueManager(BaseManager):
pass
# 把两个Queue都注册到网络上, callable参数关联了Queue对象:
QueueManager.register('get_task_queue', callable=lambda: task_queue)
QueueManager.register('get_result_queue', callable=lambda: result_queue)
# 绑定端口5000, 设置验证码'abc':
manager = QueueManager(address=('', 5000), authkey=b'abc')
# 启动Queue:
manager.start()
# 获得通过网络访问的Queue对象:
task = manager.get_task_queue()
result = manager.get_result_queue()
# 放几个任务进去:
for i in range(10):
n = random.randint(0, 10000)
print('Put task %d...' % n)
task.put(n)
# 从result队列读取结果:
print('Try get results...')
for i in range(10):
r = result.get(timeout=10)
print('Result: %s' % r)
# 关闭:
manager.shutdown()
print('master exit.')
请注意,当我们在一台机器上写多进程程序时,创建的Queue
可以直接拿来用,但是,在分布式多进程环境下,添加任务到Queue
不可以直接对原始的task_queue
进行操作,那样就绕过了QueueManager
的封装,必须通过manager.get_task_queue()
获得的Queue
接口添加。
然后,在另一台机器上启动任务进程(本机上启动也可以):
# task_worker.py
import time, sys, queue
from multiprocessing.managers import BaseManager
# 创建类似的QueueManager:
class QueueManager(BaseManager):
pass
# 由于这个QueueManager只从网络上获取Queue,所以注册时只提供名字:
QueueManager.register('get_task_queue')
QueueManager.register('get_result_queue')
# 连接到服务器,也就是运行task_master.py的机器:
server_addr = '127.0.0.1'
print('Connect to server %s...' % server_addr)
# 端口和验证码注意保持与task_master.py设置的完全一致:
m = QueueManager(address=(server_addr, 5000), authkey=b'abc')
# 从网络连接:
m.connect()
# 获取Queue的对象:
task = m.get_task_queue()
result = m.get_result_queue()
# 从task队列取任务,并把结果写入result队列:
for i in range(10):
try:
n = task.get(timeout=1)
print('run task %d * %d...' % (n, n))
r = '%d * %d = %d' % (n, n, n*n)
time.sleep(1)
result.put(r)
except Queue.Empty:
print('task queue is empty.')
# 处理结束:
print('worker exit.')
任务进程要通过网络连接到服务进程,所以要指定服务进程的IP。
现在,可以试试分布式进程的工作效果了。先启动task_master.py
服务进程:
$ python3 task_master.py
Put task 3411...
Put task 1605...
Put task 1398...
Put task 4729...
Put task 5300...
Put task 7471...
Put task 68...
Put task 4219...
Put task 339...
Put task 7866...
Try get results...
task_master.py
进程发送完任务后,开始等待result
队列的结果。现在启动task_worker.py
进程:
$ python3 task_worker.py
Connect to server 127.0.0.1...
run task 3411 * 3411...
run task 1605 * 1605...
run task 1398 * 1398...
run task 4729 * 4729...
run task 5300 * 5300...
run task 7471 * 7471...
run task 68 * 68...
run task 4219 * 4219...
run task 339 * 339...
run task 7866 * 7866...
worker exit.
task_worker.py
进程结束,在task_master.py
进程中会继续打印出结果:
Result: 3411 * 3411 = 11634921
Result: 1605 * 1605 = 2576025
Result: 1398 * 1398 = 1954404
Result: 4729 * 4729 = 22363441
Result: 5300 * 5300 = 28090000
Result: 7471 * 7471 = 55815841
Result: 68 * 68 = 4624
Result: 4219 * 4219 = 17799961
Result: 339 * 339 = 114921
Result: 7866 * 7866 = 61873956
这个简单的Master/Worker模型有什么用?其实这就是一个简单但真正的分布式计算,把代码稍加改造,启动多个worker,就可以把任务分布到几台甚至几十台机器上,比如把计算n*n
的代码换成发送邮件,就实现了邮件队列的异步发送。
Queue对象存储在哪?注意到task_worker.py
中根本没有创建Queue的代码,所以,Queue对象存储在task_master.py
进程中:
│
┌─────────────────────────────────────────┐ ┌──────────────────────────────────────┐
│task_master.py │ │ │task_worker.py │
│ │ │ │
│ task = manager.get_task_queue() │ │ │ task = manager.get_task_queue() │
│ result = manager.get_result_queue() │ │ result = manager.get_result_queue() │
│ │ │ │ │ │ │
│ │ │ │ │ │
│ ▼ │ │ │ │ │
│ ┌─────────────────────────────────┐ │ │ │ │
│ │QueueManager │ │ │ │ │ │
│ │ ┌────────────┐ ┌──────────────┐ │ │ │ │ │
│ │ │ task_queue │ │ result_queue │ │<───┼──┼──┼──────────────┘ │
│ │ └────────────┘ └──────────────┘ │ │ │ │
│ └─────────────────────────────────┘ │ │ │ │
└─────────────────────────────────────────┘ └──────────────────────────────────────┘
│
Network
而Queue
之所以能通过网络访问,就是通过QueueManager
实现的。由于QueueManager
管理的不止一个Queue
,所以,要给每个Queue
的网络调用接口起个名字,比如get_task_queue
。
authkey
有什么用?这是为了保证两台机器正常通信,不被其他机器恶意干扰。如果task_worker.py
的authkey
和task_master.py
的authkey
不一致,肯定连接不上。
Python 的 Queue 模块中提供了同步的、线程安全的队列类,包括FIFO(先入先出)队列Queue,LIFO(后入先出)队列LifoQueue,和优先级队列 PriorityQueue。
这些队列都实现了锁原语,能够在多线程中直接使用,可以使用队列来实现线程间的同步。
Queue 模块中的常用方法:
2019年3月16日 11:46:38
标签:pickle序列化 要求 优点 href 基础 false 优先级队列 共享数据 random
原文地址:https://www.cnblogs.com/sxy370921/p/11734674.html