标签:map table art orm its pac optimizer tab type
from collections import OrderedDict import jsonpath_rw import json from future.moves import collections A={"c":"ddd","app":999,"phone":18676743129,"user":"张胜男","tr":{"last":{"need":False}}} order=OrderedDict() # print(sorted(A.items(),key=lambda x:x[0],reverse=True)) def order_define(o): if isinstance(o,dict): orders=dict(sorted(o.items(),key=lambda x:x[0],reverse=True)) print(orders) # data = { # "glossary": { # "title": "example glossary", # "GlossDiv": { # "title": "S", # "GlossList": { # "GlossEntry": { # "ID": "SGML", # "SortAs": "SGML", # "GlossTerm": "Standard", # "Acronym": "SGML", # "Abbrev": "ISO ", # "GlossDef": { # "para": "DocBook.", # "GlossSeeAlso": ["GML", "XML"] # }, # "GlossSee": "markup" # } # } # } # } # } data={ "initiator": { "role": "guest", "party_id":9997 }, "job_parameters": { "work_mode": 1 }, "role": { "guest": [ 9997 ], "host": [ 9997 ], "arbiter": [ 9997 ] }, "role_parameters": { "guest": { "args": { "data": { "train_data": [ { "name": "breast_guest", "namespace": "breast_guest" } ] } }, "dataio_0": { "with_label": [True], "label_name": ["y"], "label_type": ["int"], "output_format": ["dense"], "missing_fill": [True], "outlier_replace": [True] }, "feature_scale_0": { "method": ["min_max_scale"] }, "hetero_feature_binning_0": { "method": ["quantile"], "compress_thres": [10000], "head_size": [10000], "error": [0.001], "bin_num": [10], "cols": [-1], "adjustment_factor": [0.5], "local_only": [False], "transform_param": { "transform_cols": [-1], "transform_type": ["bin_num"] } }, "hetero_feature_selection_0": { "select_cols": [-1], "filter_methods": [[ "unique_value", "iv_value_thres", "coefficient_of_variation_value_thres", "iv_percentile", "outlier_cols" ]], "local_only": [False], "unique_param": { "eps": [1e-6] }, "iv_value_param": { "value_threshold": [1.0] }, "iv_percentile_param": { "percentile_threshold": [0.9] }, "variance_coe_param": { "value_threshold": [0.3] }, "outlier_param": { "percentile": [0.95], "upper_threshold": [10] } }, "evaluation_0": { "eval_type": ["binary"], "pos_label": [1] } }, "host": { "args": { "data": { "train_data": [ { "name": "breast_host", "namespace": "breast_host" } ] } }, "dataio_0": { "with_label": [False], "output_format": ["dense"], "outlier_replace": [True] }, "feature_scale_0": { "method": ["standard_scale"], "need_run": [False] }, "hetero_feature_binning_0": { "method": ["quantile"], "compress_thres": [10000], "head_size": [10000], "error": [0.001], "bin_num": [10], "cols": [-1], "adjustment_factor": [0.5], "local_only": [False], "transform_param": { "transform_cols": [-1], "transform_type": ["bin_num"] } }, "hetero_feature_selection_0": { "select_cols": [-1], "filter_methods": [[ "unique_value", "iv_value_thres", "coefficient_of_variation_value_thres", "iv_percentile", "outlier_cols" ]], "local_only": [False], "unique_param": { "eps": [1e-6] }, "iv_value_param": { "value_threshold": [1.0] }, "iv_percentile_param": { "percentile_threshold": [0.9] }, "variance_coe_param": { "value_threshold": [0.3] }, "outlier_param": { "percentile": [0.95], "upper_threshold": [10] } }, "evaluation_0": { "need_run": [True] } } }, "algorithm_parameters": { "feature_scale_0": { "need_run": True }, "hetero_feature_binning_0": { "need_run": True }, "hetero_feature_selection_0": { "need_run": True }, "hetero_lr_0": { "penalty": "L2", "optimizer": "rmsprop", "eps": 1e-5, "alpha": 0.01, "max_iter": 10, "converge_func": "diff", "batch_size": -1, "learning_rate": 0.15, "init_param": { "init_method": "random_uniform" }, "cv_param": { "n_splits": 5, "shuffle": False, "random_seed": 103, "need_cv": False } } } } import collections import warnings warnings.filterwarnings("ignore") def get_paths(source): paths = [] if isinstance(source, collections.MutableMapping): # found a dict-like structure... for k, v in source.items(): # iterate over it; Python 2.x: source.iteritems() paths.append([k]) # add the current child path paths += [[k] + x for x in get_paths(v)] # get sub-paths, extend with the current # else, check if a list-like structure, remove if you don‘t want list paths included elif isinstance(source, collections.Sequence) and not isinstance(source, str): # Python 2.x: use basestring instead of str ^ for i, v in enumerate(source): paths.append([i]) paths += [[i] + x for x in get_paths(v)] # get sub-paths, extend with the current return paths def cast_full_path(path_list,dictvariable_name:str): path="" for i in path_list: if isinstance(i,int): path=path+‘[{}]‘.format(i) else: path =path+"[‘%s‘]"%i full_path= path return full_path def str_path(data): path_str=[] paths=get_paths(data) for i in paths: res=‘.‘.join([str(j) for j in i]) path_str.append(res) return path_str # for i in path_str: # print(i) def full_path_list(quantile_list,dictvar_name): paths_list=[] for i in quantile_list: v=cast_full_path(i,"%s"%dictvar_name) paths_list.append(v) return paths_list def judge_path(key:str,regx_index=-1): res=[] it=full_path_list(get_paths(data),"data") for i in it: var=i.replace(‘[‘,‘.‘).replace(‘]‘,‘.‘).strip(‘.‘).replace(‘..‘,‘.‘).replace("‘",‘‘).split(‘.‘) if key==var[-1]: print("matchs join strpath is:\n %s" % ‘.‘.join(var)) res.append(i) if regx_index !=-1: print("last return:\n%s "%res[regx_index]) return res[regx_index] elif regx_index==-1: print("last return:\n%s " % res) return res if __name__ == ‘__main__‘: # k=full_path_list(get_paths(data),"data") # for i in k: # print(i) judge_path("name") # st="[‘role_parameters‘][‘guest‘][‘hetero_feature_selection_0‘][‘iv_value_param‘][‘value_threshold‘][0]" # aa=st.replace(‘[‘,‘.‘).replace(‘]‘,‘.‘).strip(‘.‘).replace(‘..‘,‘.‘).replace("‘",‘‘).split(‘.‘)
.
标签:map table art orm its pac optimizer tab type
原文地址:https://www.cnblogs.com/SunshineKimi/p/11808167.html