标签:mutex idt enable tools ssi number inspect ext ted
本文首发于个人博客https://kezunlin.me/post/b90033a9/,欢迎阅读!
Install and Configure Caffe on ubuntu 16.04
requirements:
默认的protobuf,2.6.1测试通过。
此处,使用最新的3.6.1 也可以,编译caffe需要加上-std=c++11
see install and configure cuda 9.2 with cudnn 7.1 on ubuntu 16.04
tips: we need to recompile caffe with cudnn 7.1
before we compile caffe, move caffe/python/caffe/selective_search_ijcv_with_python
folder outside caffe source folder, otherwise error occurs.
see Part 1: compile protobuf-cpp on ubuntu 16.04
which protoc
/usr/local/bin/protoc
protoc --version
libprotoc 3.6.1
caffe使用static的libprotoc 3.6.1
see compile opencv on ubuntu 16.04
which opencv_version
/usr/local/bin/opencv_version
opencv_version
3.3.0
python --version
Python 2.7.12
check numpy
version
import numpy
numpy.__version__
'1.15.1'
import numpy
import inspect
inspect.getfile(numpy)
'/usr/local/lib/python2.7/dist-packages/numpy/__init__.pyc'
git clone https://github.com/BVLC/caffe.git
cd caffe
update at 20180822.
if you change your local Makefile and git pull origin master
merge conflict, solution
git checkout HEAD Makefile
git pull origin master
mkdir build && cd build && cmake-gui ..
cmake-gui options
USE_CUDNN ON
USE_OPENCV ON
Build_python ON
Build_python_layer ON
BLAS atlas
CMAKE_CXX_FLGAS -std=c++11
CMAKE_INSTALL_PREFIX /home/kezunlin/program/caffe/build/install
使用
-std=c++11
configure output
Dependencies:
BLAS : Yes (Atlas)
Boost : Yes (ver. 1.66)
glog : Yes
gflags : Yes
protobuf : Yes (ver. 3.6.1)
lmdb : Yes (ver. 0.9.17)
LevelDB : Yes (ver. 1.18)
Snappy : Yes (ver. 1.1.3)
OpenCV : Yes (ver. 3.1.0)
CUDA : Yes (ver. 9.2)
NVIDIA CUDA:
Target GPU(s) : Auto
GPU arch(s) : sm_61
cuDNN : Yes (ver. 7.1.4)
Python:
Interpreter : /usr/bin/python2.7 (ver. 2.7.12)
Libraries : /usr/lib/x86_64-linux-gnu/libpython2.7.so (ver 2.7.12)
NumPy : /usr/lib/python2.7/dist-packages/numpy/core/include (ver 1.51.1)
Documentaion:
Doxygen : /usr/bin/doxygen (1.8.11)
config_file : /home/kezunlin/program/caffe/.Doxyfile
Install:
Install path : /home/kezunlin/program/caffe-wy/build/install
Configuring done
we can also use
python3.5
andnumpy 1.16.2
Python:
Interpreter : /usr/bin/python3 (ver. 3.5.2)
Libraries : /usr/lib/x86_64-linux-gnu/libpython3.5m.so (ver 3.5.2)
NumPy : /home/kezunlin/.local/lib/python3.5/site-packages/numpy/core/include (ver 1.16.2)
use -std=c++11
, otherwise errors occur
make -j8
[ 1%] Running C++/Python protocol buffer compiler on /home/kezunlin/program/caffe-wy/src/caffe/proto/caffe.proto
Scanning dependencies of target caffeproto
[ 1%] Building CXX object src/caffe/CMakeFiles/caffeproto.dir/__/__/include/caffe/proto/caffe.pb.cc.o
In file included from /usr/include/c++/5/mutex:35:0,
from /usr/local/include/google/protobuf/stubs/mutex.h:33,
from /usr/local/include/google/protobuf/stubs/common.h:52,
from /home/kezunlin/program/caffe-wy/build/include/caffe/proto/caffe.pb.h:9,
from /home/kezunlin/program/caffe-wy/build/include/caffe/proto/caffe.pb.cc:4:
/usr/include/c++/5/bits/c++0x_warning.h:32:2: error: #error This file requires compiler and library support for the ISO C++ 2011 standard. This support must be enabled with the -std=c++11 or -std=gnu++11 compiler options.
#error This file requires compiler and library support \
vim /usr/local/cuda/include/host_config.h
# 将其中的第115行注释掉:
#error-- unsupported GNU version! gcc versions later than 4.9 are not supported!
======>
//#error-- unsupported GNU version! gcc versions later than 4.9 are not supported!
Comment out the ifndef
// #ifndef GFLAGS_GFLAGS_H_
namespace gflags = google;
// #endif // GFLAGS_GFLAGS_H_
make clean
make -j8
make pycaffe
output
[ 1%] Running C++/Python protocol buffer compiler on /home/kezunlin/program/caffe-wy/src/caffe/proto/caffe.proto
Scanning dependencies of target caffeproto
[ 1%] Building CXX object src/caffe/CMakeFiles/caffeproto.dir/__/__/include/caffe/proto/caffe.pb.cc.o
[ 1%] Linking CXX static library ../../lib/libcaffeproto.a
[ 1%] Built target caffeproto
libcaffeproto.a
static library
make install
ls build/install
bin include lib python share
will install to
build/install
folder
ls build/install/lib
libcaffeproto.a libcaffe.so libcaffe.so.1.0.0
Target "caffe" has an INTERFACE_LINK_LIBRARIES property which differs from its LINK_INTERFACE_LIBRARIES properties.
fix ipython 6.1 version conflict
vim caffe/python/requirements.txt
ipython>=3.0.0
====>
ipython==5.4.1
reinstall ipython
pip install -r requirements.txt
cd caffe/python
python
>>>import caffe
sudo apt-get install graphviz
sudo pip install theano=0.9
# for theano d3viz
sudo pip install pydot==1.1.0
sudo pip install pydot-ng
# other usefull tools
sudo pip install jupyter
sudo pip install seaborn
we need to install graphviz, otherwise we get ERROR:"dot" not found in path
draw net
cd $CAFFE_HOME
./python/draw_net.py ./examples/mnist/lenet.prototxt ./examples/mnist/lenet.png
eog ./examples/mnist/lenet.png
cd caffe
./examples/mnist/create_mnist.sh
./examples/mnist/train_lenet.sh
cat ./examples/mnist/train_lenet.sh
./build/tools/caffe train --solver=examples/mnist/lenet_solver.prototxt $@
output results
I0912 15:57:28.812655 14094 solver.cpp:327] Iteration 10000, loss = 0.00272129
I0912 15:57:28.812675 14094 solver.cpp:347] Iteration 10000, Testing net (#0)
I0912 15:57:28.891481 14100 data_layer.cpp:73] Restarting data prefetching from start.
I0912 15:57:28.893678 14094 solver.cpp:414] Test net output #0: accuracy = 0.9904
I0912 15:57:28.893707 14094 solver.cpp:414] Test net output #1: loss = 0.0276084 (* 1 = 0.0276084 loss)
I0912 15:57:28.893714 14094 solver.cpp:332] Optimization Done.
I0912 15:57:28.893719 14094 caffe.cpp:250] Optimization Done.
tips, for
caffe
, errors because no imdb data.
I0417 13:28:17.764714 35030 layer_factory.hpp:77] Creating layer mnist
F0417 13:28:17.765067 35030 db_lmdb.hpp:15] Check failed: mdb_status == 0 (2 vs. 0) No such file or directory
---------------------
./tools/upgrade_net_proto_text old.prototxt new.prototxt
./tools/upgrade_net_proto_binary old.caffemodel new.caffemodel
yolov3
./build/tools/caffe time --model='det/yolov3/yolov3.prototxt' --iterations=100 --gpu=0
I0313 10:15:41.888208 12527 caffe.cpp:408] Average Forward pass: 49.7012 ms.
I0313 10:15:41.888213 12527 caffe.cpp:410] Average Backward pass: 84.946 ms.
I0313 10:15:41.888248 12527 caffe.cpp:412] Average Forward-Backward: 134.85 ms.
yolov3 autotrain
./build/tools/caffe time --model='det/autotrain/yolo3-autotrain-mbn-416-5c.prototxt' --iterations=100 --gpu=0
I0313 10:19:27.283625 12894 caffe.cpp:408] Average Forward pass: 38.4823 ms.
I0313 10:19:27.283630 12894 caffe.cpp:410] Average Backward pass: 74.1656 ms.
I0313 10:19:27.283638 12894 caffe.cpp:412] Average Forward-Backward: 112.732 ms.
#include <caffe/caffe.hpp>
#ifdef USE_OPENCV
#include <opencv2/core/core.hpp>
#include <opencv2/highgui/highgui.hpp>
#include <opencv2/imgproc/imgproc.hpp>
#endif // USE_OPENCV
#include <algorithm>
#include <iosfwd>
#include <memory>
#include <string>
#include <utility>
#include <vector>
#ifdef USE_OPENCV
using namespace caffe; // NOLINT(build/namespaces)
using std::string;
/* Pair (label, confidence) representing a prediction. */
typedef std::pair<string, float> Prediction;
class Classifier {
public:
Classifier(const string& model_file,
const string& trained_file,
const string& mean_file,
const string& label_file);
std::vector<Prediction> Classify(const cv::Mat& img, int N = 5);
private:
void SetMean(const string& mean_file);
std::vector<float> Predict(const cv::Mat& img);
void WrapInputLayer(std::vector<cv::Mat>* input_channels);
void Preprocess(const cv::Mat& img,
std::vector<cv::Mat>* input_channels);
private:
shared_ptr<Net<float> > net_;
cv::Size input_geometry_;
int num_channels_;
cv::Mat mean_;
std::vector<string> labels_;
};
Classifier::Classifier(const string& model_file,
const string& trained_file,
const string& mean_file,
const string& label_file) {
#ifdef CPU_ONLY
Caffe::set_mode(Caffe::CPU);
#else
Caffe::set_mode(Caffe::GPU);
#endif
/* Load the network. */
net_.reset(new Net<float>(model_file, TEST));
net_->CopyTrainedLayersFrom(trained_file);
CHECK_EQ(net_->num_inputs(), 1) << "Network should have exactly one input.";
CHECK_EQ(net_->num_outputs(), 1) << "Network should have exactly one output.";
Blob<float>* input_layer = net_->input_blobs()[0];
num_channels_ = input_layer->channels();
CHECK(num_channels_ == 3 || num_channels_ == 1)
<< "Input layer should have 1 or 3 channels.";
input_geometry_ = cv::Size(input_layer->width(), input_layer->height());
/* Load the binaryproto mean file. */
SetMean(mean_file);
/* Load labels. */
std::ifstream labels(label_file.c_str());
CHECK(labels) << "Unable to open labels file " << label_file;
string line;
while (std::getline(labels, line))
labels_.push_back(string(line));
Blob<float>* output_layer = net_->output_blobs()[0];
CHECK_EQ(labels_.size(), output_layer->channels())
<< "Number of labels is different from the output layer dimension.";
}
static bool PairCompare(const std::pair<float, int>& lhs,
const std::pair<float, int>& rhs) {
return lhs.first > rhs.first;
}
/* Return the indices of the top N values of vector v. */
static std::vector<int> Argmax(const std::vector<float>& v, int N) {
std::vector<std::pair<float, int> > pairs;
for (size_t i = 0; i < v.size(); ++i)
pairs.push_back(std::make_pair(v[i], i));
std::partial_sort(pairs.begin(), pairs.begin() + N, pairs.end(), PairCompare);
std::vector<int> result;
for (int i = 0; i < N; ++i)
result.push_back(pairs[i].second);
return result;
}
/* Return the top N predictions. */
std::vector<Prediction> Classifier::Classify(const cv::Mat& img, int N) {
std::vector<float> output = Predict(img);
N = std::min<int>(labels_.size(), N);
std::vector<int> maxN = Argmax(output, N);
std::vector<Prediction> predictions;
for (int i = 0; i < N; ++i) {
int idx = maxN[i];
predictions.push_back(std::make_pair(labels_[idx], output[idx]));
}
return predictions;
}
/* Load the mean file in binaryproto format. */
void Classifier::SetMean(const string& mean_file) {
BlobProto blob_proto;
ReadProtoFromBinaryFileOrDie(mean_file.c_str(), &blob_proto);
/* Convert from BlobProto to Blob<float> */
Blob<float> mean_blob;
mean_blob.FromProto(blob_proto);
CHECK_EQ(mean_blob.channels(), num_channels_)
<< "Number of channels of mean file doesn't match input layer.";
/* The format of the mean file is planar 32-bit float BGR or grayscale. */
std::vector<cv::Mat> channels;
float* data = mean_blob.mutable_cpu_data();
for (int i = 0; i < num_channels_; ++i) {
/* Extract an individual channel. */
cv::Mat channel(mean_blob.height(), mean_blob.width(), CV_32FC1, data);
channels.push_back(channel);
data += mean_blob.height() * mean_blob.width();
}
/* Merge the separate channels into a single image. */
cv::Mat mean;
cv::merge(channels, mean);
/* Compute the global mean pixel value and create a mean image
* filled with this value. */
cv::Scalar channel_mean = cv::mean(mean);
mean_ = cv::Mat(input_geometry_, mean.type(), channel_mean);
}
std::vector<float> Classifier::Predict(const cv::Mat& img) {
Blob<float>* input_layer = net_->input_blobs()[0];
input_layer->Reshape(1, num_channels_,
input_geometry_.height, input_geometry_.width);
/* Forward dimension change to all layers. */
net_->Reshape();
std::vector<cv::Mat> input_channels;
WrapInputLayer(&input_channels);
Preprocess(img, &input_channels);
net_->Forward();
/* Copy the output layer to a std::vector */
Blob<float>* output_layer = net_->output_blobs()[0];
const float* begin = output_layer->cpu_data();
const float* end = begin + output_layer->channels();
return std::vector<float>(begin, end);
}
/* Wrap the input layer of the network in separate cv::Mat objects
* (one per channel). This way we save one memcpy operation and we
* don't need to rely on cudaMemcpy2D. The last preprocessing
* operation will write the separate channels directly to the input
* layer. */
void Classifier::WrapInputLayer(std::vector<cv::Mat>* input_channels) {
Blob<float>* input_layer = net_->input_blobs()[0];
int width = input_layer->width();
int height = input_layer->height();
float* input_data = input_layer->mutable_cpu_data();
for (int i = 0; i < input_layer->channels(); ++i) {
cv::Mat channel(height, width, CV_32FC1, input_data);
input_channels->push_back(channel);
input_data += width * height;
}
}
void Classifier::Preprocess(const cv::Mat& img,
std::vector<cv::Mat>* input_channels) {
/* Convert the input image to the input image format of the network. */
cv::Mat sample;
if (img.channels() == 3 && num_channels_ == 1)
cv::cvtColor(img, sample, cv::COLOR_BGR2GRAY);
else if (img.channels() == 4 && num_channels_ == 1)
cv::cvtColor(img, sample, cv::COLOR_BGRA2GRAY);
else if (img.channels() == 4 && num_channels_ == 3)
cv::cvtColor(img, sample, cv::COLOR_BGRA2BGR);
else if (img.channels() == 1 && num_channels_ == 3)
cv::cvtColor(img, sample, cv::COLOR_GRAY2BGR);
else
sample = img;
cv::Mat sample_resized;
if (sample.size() != input_geometry_)
cv::resize(sample, sample_resized, input_geometry_);
else
sample_resized = sample;
cv::Mat sample_float;
if (num_channels_ == 3)
sample_resized.convertTo(sample_float, CV_32FC3);
else
sample_resized.convertTo(sample_float, CV_32FC1);
cv::Mat sample_normalized;
cv::subtract(sample_float, mean_, sample_normalized);
/* This operation will write the separate BGR planes directly to the
* input layer of the network because it is wrapped by the cv::Mat
* objects in input_channels. */
cv::split(sample_normalized, *input_channels);
CHECK(reinterpret_cast<float*>(input_channels->at(0).data)
== net_->input_blobs()[0]->cpu_data())
<< "Input channels are not wrapping the input layer of the network.";
}
int main(int argc, char** argv) {
if (argc != 6) {
std::cerr << "Usage: " << argv[0]
<< " deploy.prototxt network.caffemodel"
<< " mean.binaryproto labels.txt img.jpg" << std::endl;
return 1;
}
::google::InitGoogleLogging(argv[0]);
string model_file = argv[1];
string trained_file = argv[2];
string mean_file = argv[3];
string label_file = argv[4];
Classifier classifier(model_file, trained_file, mean_file, label_file);
string file = argv[5];
std::cout << "---------- Prediction for "
<< file << " ----------" << std::endl;
cv::Mat img = cv::imread(file, -1);
CHECK(!img.empty()) << "Unable to decode image " << file;
std::vector<Prediction> predictions = classifier.Classify(img);
/* Print the top N predictions. */
for (size_t i = 0; i < predictions.size(); ++i) {
Prediction p = predictions[i];
std::cout << std::fixed << std::setprecision(4) << p.second << " - \""
<< p.first << "\"" << std::endl;
}
}
#else
int main(int argc, char** argv) {
LOG(FATAL) << "This example requires OpenCV; compile with USE_OPENCV.";
}
#endif // USE_OPENCV
find_package(OpenCV REQUIRED)
set(Caffe_DIR "/home/kezunlin/program/caffe-wy/build/install/share/Caffe") # caffe-wy caffe
# for CaffeConfig.cmake/ caffe-config.cmake
find_package(Caffe)
# offical caffe : There is no Caffe_INCLUDE_DIRS and Caffe_DEFINITIONS
# refinedet caffe: OK.
add_definitions(${Caffe_DEFINITIONS})
MESSAGE( [Main] " Caffe_INCLUDE_DIRS = ${Caffe_INCLUDE_DIRS}")
MESSAGE( [Main] " Caffe_DEFINITIONS = ${Caffe_DEFINITIONS}")
MESSAGE( [Main] " Caffe_LIBRARIES = ${Caffe_LIBRARIES}") # caffe
MESSAGE( [Main] " Caffe_CPU_ONLY = ${Caffe_CPU_ONLY}")
MESSAGE( [Main] " Caffe_HAVE_CUDA = ${Caffe_HAVE_CUDA}")
MESSAGE( [Main] " Caffe_HAVE_CUDNN = ${Caffe_HAVE_CUDNN}")
include_directories(${Caffe_INCLUDE_DIRS})
target_link_libraries(demo
${OpenCV_LIBS}
${Caffe_LIBRARIES}
)
ldd demo
if error occurs:
libcaffe.so.1.0.0 => not found
fix
vim .bashrc
# for caffe
export LD_LIBRARY_PATH=/home/kezunlin/program/caffe-wy/build/install/lib:$LD_LIBRARY_PATH
ubuntu 16.04源码编译和配置caffe详细教程 | Install and Configure Caffe on ubuntu 16.04
标签:mutex idt enable tools ssi number inspect ext ted
原文地址:https://www.cnblogs.com/kezunlin/p/11842517.html