标签:abs ready row this serialize Fix erp mem pre
RPC异构流数据交换
文件或目录变化监听
MQ或队列订阅数据持续监听
Network类数据交换
定制源
exec-memory-logger.properties
#指定agent的sources,sinks,channels a1.sources = s1 a1.sinks = k1 a1.channels = c1 #配置sources属性 a1.sources.s1.type = exec a1.sources.s1.command = tail -F /tmp/log.txt a1.sources.s1.shell = /bin/bash -c a1.sources.s1.channels = c1 #配置sink a1.sinks.k1.type = avro a1.sinks.k1.hostname = 192.168.1.103 a1.sinks.k1.port = 8888 a1.sinks.k1.batch-size = 1 a1.sinks.k1.channel = c1 #配置channel类型 a1.channels.c1.type = memory a1.channels.c1.capacity = 1000 a1.channels.c1.transactionCapacity = 100
启动
flume-ng agent --conf conf --conf-file /usr/app/apache-flume-1.8.0-bin/exec-memory-logger.properties --name a1 -Dflume.root.logger=INFO,console
测试
echo "asfsafsf" >> /tmp/log.txt
netcat.properties
# Name the components on this agent a1.sources = r1 a1.sinks = k1 a1.channels = c1 # Describe/configure the source a1.sources.r1.type = netcat a1.sources.r1.bind = localhost a1.sources.r1.port = 44444 # Describe the sink a1.sinks.k1.type = logger # Use a channel which buffers events in memory a1.channels.c1.type = memory a1.channels.c1.capacity = 1000 a1.channels.c1.transactionCapacity = 100 # Bind the source and sink to the channel a1.sources.r1.channels = c1 a1.sinks.k1.channel = c1
启动
flume-ng agent --conf conf --conf-file /usr/app/apache-flume-1.8.0-bin/netcat.properties --name a1 -Dflume.root.logger=INFO,console
测试
telnet localhost 44444
read-kafka.properties 、write-kafka.properties
#指定agent的sources,sinks,channels a1.sources = s1 a1.sinks = k1 a1.channels = c1 #配置sources属性 a1.sources.s1.type = org.apache.flume.source.kafka.KafkaSource a1.sources.s1.channels = c1 a1.sources.s1.batchSize = 5000 a1.sources.s1.batchDurationMillis = 2000 a1.sources.s1.kafka.bootstrap.servers = 192.168.1.103:9092 a1.sources.s1.kafka.topics = test1 a1.sources.s1.kafka.consumer.group.id = custom.g.id #将sources与channels进行绑定 a1.sources.s1.channels = c1 #配置sink a1.sinks.k1.type = logger #将sinks与channels进行绑定 a1.sinks.k1.channel = c1 #配置channel类型 a1.channels.c1.type = memory
a1.sources = s1 a1.channels = c1 a1.sinks = k1 a1.sources.s1.type=exec a1.sources.s1.command=tail -F /tmp/kafka.log a1.sources.s1.channels=c1 #设置Kafka接收器 a1.sinks.k1.type= org.apache.flume.sink.kafka.KafkaSink #设置Kafka地址 a1.sinks.k1.brokerList=192.168.1.103:9092 #设置发送到Kafka上的主题 a1.sinks.k1.topic=test1 #设置序列化方式 a1.sinks.k1.serializer.class=kafka.serializer.StringEncoder a1.sinks.k1.channel=c1 a1.channels.c1.type=memory a1.channels.c1.capacity=10000 a1.channels.c1.transactionCapacity=100
启动
flume-ng agent --conf conf --conf-file /usr/app/apache-flume-1.8.0-bin/read-kafka.properties --name a1 -Dflume.root.logger=INFO,console flume-ng agent --conf conf --conf-file /usr/app/apache-flume-1.8.0-bin/write-kafka.properties --name a1 -Dflume.root.logger=INFO,console
测试
# 创建用于测试主题 bin/kafka-topics.sh --create --bootstrap-server 192.168.1.103:9092 --replication-factor 1 --partitions 1 --topic test1 # 启动 Producer,用于发送测试数据: bin/kafka-console-producer.sh --broker-list 192.168.1.103:9092 --topic test1
a1.sources = r1 a1.channels = c1 a1.sources.r1.type = org.example.MySource a1.sources.r1.channels = c1
spooling-memory-hdfs.properties ,监听目录变化,将新建的文件传到HDFS
#指定agent的sources,sinks,channels a1.sources = s1 a1.sinks = k1 a1.channels = c1 #配置sources属性 a1.sources.s1.type =spooldir a1.sources.s1.spoolDir =/tmp/log2 a1.sources.s1.basenameHeader = true a1.sources.s1.basenameHeaderKey = fileName #将sources与channels进行绑定 a1.sources.s1.channels =c1 #配置sink a1.sinks.k1.type = hdfs a1.sinks.k1.hdfs.path = /flume/events/%y-%m-%d/%H/ a1.sinks.k1.hdfs.filePrefix = %{fileName} #生成的文件类型,默认是Sequencefile,可用DataStream,则为普通文本 a1.sinks.k1.hdfs.fileType = DataStream a1.sinks.k1.hdfs.useLocalTimeStamp = true #将sinks与channels进行绑定 a1.sinks.k1.channel = c1 #配置channel类型 a1.channels.c1.type = memory
测试
hdfs dfs -ls /flume/events/19-11-21/15
a1.channels = c1 a1.channels.c1.type = memory a1.sinks = k1 a1.sinks.k1.type = hive a1.sinks.k1.channel = c1 a1.sinks.k1.hive.metastore = thrift://127.0.0.1:9083 a1.sinks.k1.hive.database = logsdb a1.sinks.k1.hive.table = weblogs a1.sinks.k1.hive.partition = asia,%{country},%y-%m-%d-%H-%M a1.sinks.k1.useLocalTimeStamp = false a1.sinks.k1.round = true a1.sinks.k1.roundValue = 10 a1.sinks.k1.roundUnit = minute a1.sinks.k1.serializer = DELIMITED a1.sinks.k1.serializer.delimiter = "\t" a1.sinks.k1.serializer.serdeSeparator = ‘\t‘ a1.sinks.k1.serializer.fieldnames =id,,msg
exec-memory-avro.properties、avro-memory-log.properties
#指定agent的sources,sinks,channels a1.sources = s1 a1.sinks = k1 a1.channels = c1 #配置sources属性 a1.sources.s1.type = exec a1.sources.s1.command = tail -F /tmp/log.txt a1.sources.s1.shell = /bin/bash -c a1.sources.s1.channels = c1 #配置sink a1.sinks.k1.type = avro a1.sinks.k1.hostname = 192.168.1.103 a1.sinks.k1.port = 8888 a1.sinks.k1.batch-size = 1 a1.sinks.k1.channel = c1 #配置channel类型 a1.channels.c1.type = memory a1.channels.c1.capacity = 1000 a1.channels.c1.transactionCapacity = 100
#指定agent的sources,sinks,channels a2.sources = s2 a2.sinks = k2 a2.channels = c2 #配置sources属性 a2.sources.s2.type = avro a2.sources.s2.bind = 192.168.1.103 a2.sources.s2.port = 8888 #将sources与channels进行绑定 a2.sources.s2.channels = c2 #配置sink a2.sinks.k2.type = logger #将sinks与channels进行绑定 a2.sinks.k2.channel = c2 #配置channel类型 a2.channels.c2.type = memory a2.channels.c2.capacity = 1000 a2.channels.c2.transactionCapacity = 100
启动
先 flume-ng agent --conf conf --conf-file /usr/app/apache-flume-1.8.0-bin/avro-memory-log.properties --name a2 -Dflume.root.logger=INFO,console 后 flume-ng agent --conf conf --conf-file /usr/app/apache-flume-1.8.0-bin/exec-memory-avro.properties --name a1 -Dflume.root.logger=INFO,console
测试,使用一个Avro客户端发送数据
import org.apache.flume.Event; import org.apache.flume.EventDeliveryException; import org.apache.flume.event.EventBuilder; import org.apache.flume.api.SecureRpcClientFactory; import org.apache.flume.api.RpcClientConfigurationConstants; import org.apache.flume.api.RpcClient; import java.nio.charset.Charset; import java.util.Properties; public class MyApp { public static void main(String[] args) { MySecureRpcClientFacade client = new MySecureRpcClientFacade(); // Initialize client with the remote Flume agent‘s host, port Properties props = new Properties(); props.setProperty(RpcClientConfigurationConstants.CONFIG_CLIENT_TYPE, "thrift"); props.setProperty("hosts", "h1"); props.setProperty("hosts.h1", "client.example.org"+":"+ String.valueOf(8888)); // Initialize client with the kerberos authentication related properties props.setProperty("kerberos", "true"); props.setProperty("client-principal", "flumeclient/client.example.org@EXAMPLE.ORG"); props.setProperty("client-keytab", "/tmp/flumeclient.keytab"); props.setProperty("server-principal", "flume/server.example.org@EXAMPLE.ORG"); client.init(props); // Send 10 events to the remote Flume agent. That agent should be // configured to listen with an AvroSource. String sampleData = "Hello Flume!"; for (int i = 0; i < 10; i++) { client.sendDataToFlume(sampleData); } client.cleanUp(); } } class MySecureRpcClientFacade { private RpcClient client; private Properties properties; public void init(Properties properties) { // Setup the RPC connection this.properties = properties; // Create the ThriftSecureRpcClient instance by using SecureRpcClientFactory this.client = SecureRpcClientFactory.getThriftInstance(properties); } public void sendDataToFlume(String data) { // Create a Flume Event object that encapsulates the sample data Event event = EventBuilder.withBody(data, Charset.forName("UTF-8")); // Send the event try { client.append(event); } catch (EventDeliveryException e) { // clean up and recreate the client client.close(); client = null; client = SecureRpcClientFactory.getThriftInstance(properties); } } public void cleanUp() { // Close the RPC connection client.close(); } }
a1.channels = c1 a1.sinks = k1 a1.sinks.k1.type = elasticsearch a1.sinks.k1.hostNames = 127.0.0.1:9200,127.0.0.2:9300 a1.sinks.k1.indexName = foo_index a1.sinks.k1.indexType = bar_type a1.sinks.k1.clusterName = foobar_cluster a1.sinks.k1.batchSize = 500 a1.sinks.k1.ttl = 5d a1.sinks.k1.serializer = org.apache.flume.sink.elasticsearch.ElasticSearchDynamicSerializer a1.sinks.k1.channel = c1
public class MySink extends AbstractSink implements Configurable { private String myProp; @Override public void configure(Context context) { String myProp = context.getString("myProp", "defaultValue"); // Process the myProp value (e.g. validation) // Store myProp for later retrieval by process() method this.myProp = myProp; } @Override public void start() { // Initialize the connection to the external repository (e.g. HDFS) that // this Sink will forward Events to .. } @Override public void stop () { // Disconnect from the external respository and do any // additional cleanup (e.g. releasing resources or nulling-out // field values) .. } @Override public Status process() throws EventDeliveryException { Status status = null; // Start transaction Channel ch = getChannel(); Transaction txn = ch.getTransaction(); txn.begin(); try { // This try clause includes whatever Channel operations you want to do Event event = ch.take(); // Send the Event to the external repository. // storeSomeData(e); txn.commit(); status = Status.READY; } catch (Throwable t) { txn.rollback(); // Log exception, handle individual exceptions as needed status = Status.BACKOFF; // re-throw all Errors if (t instanceof Error) { throw (Error)t; } } return status; } }
public class MySource extends AbstractSource implements Configurable, PollableSource { private String myProp; @Override public void configure(Context context) { String myProp = context.getString("myProp", "defaultValue"); // Process the myProp value (e.g. validation, convert to another type, ...) // Store myProp for later retrieval by process() method this.myProp = myProp; } @Override public void start() { // Initialize the connection to the external client } @Override public void stop () { // Disconnect from external client and do any additional cleanup // (e.g. releasing resources or nulling-out field values) .. } @Override public Status process() throws EventDeliveryException { Status status = null; try { // This try clause includes whatever Channel/Event operations you want to do // Receive new data Event e = getSomeData(); // Store the Event into this Source‘s associated Channel(s) getChannelProcessor().processEvent(e); status = Status.READY; } catch (Throwable t) { // Log exception, handle individual exceptions as needed status = Status.BACKOFF; // re-throw all Errors if (t instanceof Error) { throw (Error)t; } } finally { txn.close(); } return status; } }
标签:abs ready row this serialize Fix erp mem pre
原文地址:https://www.cnblogs.com/starcrm/p/11909979.html