码迷,mamicode.com
首页 > Web开发 > 详细

[netty4][netty-buffer]netty之池化buffer

时间:2019-12-01 21:08:39      阅读:128      评论:0      收藏:0      [点我收藏+]

标签:prot   void   html   static   some   define   class   abstract   fas   

PooledByteBufAllocator buffer分配

buffer分配的入口:
io.netty.buffer.PooledByteBufAllocator.newDirectBuffer(int, int)
netty实际应用时分配调用栈:














CLASS_NAMEMETHOD_NAMELINE_NUM
io/netty/buffer/PooledByteBufAllocatornewDirectBuffer339
io/netty/buffer/AbstractByteBufAllocatordirectBuffer185
io/netty/buffer/AbstractByteBufAllocatordirectBuffer176
io/netty/buffer/AbstractByteBufAllocatorioBuffer139
io/netty/channel/DefaultMaxMessagesRecvByteBufAllocator$MaxMessageHandleallocate114
io/netty/channel/nio/AbstractNioByteChannel$NioByteUnsaferead186
io/netty/channel/nio/NioEventLoopprocessSelectedKey682
io/netty/channel/nio/NioEventLoopprocessSelectedKeysOptimized628
io/netty/channel/nio/NioEventLoopprocessSelectedKeys533
io/netty/channel/nio/NioEventLooprun511
io/netty/util/concurrent/SingleThreadEventExecutor$5run956

测试case代码

package io.netty.buffer;

import org.junit.Assert;
public class PooledByteBufTest {

    public static void main(String[] args) {
          final PooledByteBufAllocator allocator = new PooledByteBufAllocator(
                    false,   // preferDirect
                    0,      // nHeapArena
                    1,      // nDirectArena
                    8192,   // pageSize
                    11,     // maxOrder
                    3,      // tinyCacheSize
                    3,      // smallCacheSize
                    3,      // normalCacheSize
                    true    // useCacheForAllThreads
                    );

            // create tiny buffer
            final ByteBuf b1 = allocator.directBuffer(24);
            // create small buffer
            final ByteBuf b2 = allocator.directBuffer(800);
            // create normal buffer
            final ByteBuf b3 = allocator.directBuffer(8192 * 2);

            Assert.assertNotNull(b1);
            Assert.assertNotNull(b2);
            Assert.assertNotNull(b3);

            // then release buffer to deallocated memory while threadlocal cache has been disabled
            // allocations counter value must equals deallocations counter value
            Assert.assertTrue(b1.release());
            Assert.assertTrue(b2.release());
            Assert.assertTrue(b3.release());
    }
}

PoolChunk

PoolChunk本身数据结构与设计思路参见PoolChunk注释:

/**
 * Description of algorithm for PageRun/PoolSubpage allocation from PoolChunk
 *
 * Notation: The following terms are important to understand the code
 * > page  - a page is the smallest unit of memory chunk that can be allocated
 * page是chunk中能分配的最小单元  
 * > chunk - a chunk is a collection of pages
 * 一个chunk中有一组page  1对多  
 * > in this code chunkSize = 2^{maxOrder} * pageSize
 * 代码中  chunksize大小计算如上  maxOrder 是啥?
 *
 * To begin we allocate a byte array of size = chunkSize
 * Whenever a ByteBuf of given size needs to be created we search for the first position
 * in the byte array that has enough empty space to accommodate the requested size and
 * return a (long) handle that encodes this offset information, (this memory segment is then
 * marked as reserved so it is always used by exactly one ByteBuf and no more)
 * 首先,当需要创建给定大小的ByteBuf时,我们分配一个size=chunkSize的字节数组,
 * 在字节数组中搜索第一个有足够的空空间来容纳请求的大小的位置,
 * 并返回一个(长)句柄来编码该偏移量信息(然后将该内存段标记为保留,因此它总是仅由一个ByteBuf使用,不再使用)
 *
 * For simplicity all sizes are normalized according to PoolArena#normalizeCapacity method
 * This ensures that when we request for memory segments of size >= pageSize the normalizedCapacity
 * equals the next nearest power of 2
 * 为了简单起见,所有大小都按照PoolArena#normalizeCapacity方法进行规范化
 * 这确保当我们请求大小大于等于pageSize的内存段时,normalized容量等于下一个最接近的2的幂
 *
 * To search for the first offset in chunk that has at least requested size available we construct a
 * complete balanced binary tree and store it in an array (just like heaps) - memoryMap
 * 为了搜索块中至少有请求大小可用的第一个偏移量,我们构造了一个完整的平衡二叉树,并将其存储在一个数组(就像堆一样)-内存映射中
 *
 * The tree looks like this (the size of each node being mentioned in the parenthesis)
 * 树看起来是这样的(括号中提到的每个节点的大小)
 *
 * depth=0        1 node (chunkSize)
 * depth=1        2 nodes (chunkSize/2)
 * ..
 * ..
 * depth=d        2^d nodes (chunkSize/2^d)
 * ..
 * depth=maxOrder 2^maxOrder nodes (chunkSize/2^{maxOrder} = pageSize)  pageSize 在最下一层  最顶层是chunksize 从上往下走,每过一层除以2  
 *
 * depth=maxOrder is the last level and the leafs consist of pages
 *
 * With this tree available searching in chunkArray translates like this:
 * To allocate a memory segment of size chunkSize/2^k we search for the first node (from left) at height k
 * which is unused 要分配大小为chunkSize/2^k的内存段,我们在高度k处搜索第一个未使用的节点(从左开始)。 嗯嗯
 *
 * Algorithm:
 * ----------
 * Encode the tree in memoryMap with the notation  用符号将树编码在内存中
 *   memoryMap[id] = x => in the subtree rooted at id, the first node that is free to be allocated
 *   is at depth x (counted from depth=0) i.e., at depths [depth_of_id, x), there is no node that is free
 * 在以id为根的子树中,可自由分配的第一个节点在深度x(从深度=0开始计算),即在深度[深度id,x的深度]处,没有可自由分配的节点
 *
 *  As we allocate & free nodes, we update values stored in memoryMap so that the property is maintained
 * 当我们分配空闲节点时,我们更新存储在memoryMap中的值,以便维护属性
 *
 * Initialization -
 *   In the beginning we construct the memoryMap array by storing the depth of a node at each node
 * 首先,我们通过在每个节点上存储一个节点的深度来构造memoryMap数组
 *     i.e., memoryMap[id] = depth_of_id
 *
 * Observations:
 * -------------
 * 1) memoryMap[id] = depth_of_id  => it is free / unallocated
 * 2) memoryMap[id] > depth_of_id  => at least one of its child nodes is allocated, so we cannot allocate it, but
 *                                    some of its children can still be allocated based on their availability
 * 3) memoryMap[id] = maxOrder + 1 => the node is fully allocated & thus none of its children can be allocated, it
 *                                    is thus marked as unusable
 *
 * Algorithm: [allocateNode(d) => we want to find the first node (from left) at height h that can be allocated]
 * ----------
 * 1) start at root (i.e., depth = 0 or id = 1)
 * 2) if memoryMap[1] > d => cannot be allocated from this chunk
 * 3) if left node value <= h; we can allocate from left subtree so move to left and repeat until found
 * 4) else try in right subtree
 *
 * Algorithm: [allocateRun(size)]
 * ----------
 * 1) Compute d = log_2(chunkSize/size)
 * 2) Return allocateNode(d)
 *
 * Algorithm: [allocateSubpage(size)]
 * ----------
 * 1) use allocateNode(maxOrder) to find an empty (i.e., unused) leaf (i.e., page)
 * 2) use this handle to construct the PoolSubpage object or if it already exists just call init(normCapacity)
 *    note that this PoolSubpage object is added to subpagesPool in the PoolArena when we init() it
 *
 * Note:
 * -----
 * In the implementation for improving cache coherence,
 * we store 2 pieces of information depth_of_id and x as two byte values in memoryMap and depthMap respectively
 *
 * memoryMap[id]= depth_of_id  is defined above
 * depthMap[id]= x  indicates that the first node which is free to be allocated is at depth x (from root)
 */
final class PoolChunk<T> implements PoolChunkMetric {

io.netty.buffer.PoolArena.findSubpagePoolHead(int) 算出page header在page table中的index,小的page在前面

// trace 库地址 jdbc:h2:/Users/simon/twice-cooked-pork/trace-data/基于netty4做的resetserver的一次http请求trace/tracer.data.h2db

PoolChunk要解决的问题有:

  1. 快速查找未分配的地方并分配
  2. 尽量不要有碎片,可以理解成尽量挨着紧凑的分配

整个chunk的结构如下:

                                                    +------+   chunksize 当L=11时,是16M
L=0                                                 |   0  |
                                   +----------------+------+------------------+
                                   |                                          |
                                   |                                          |
                                   |                                          |
                               +---v--+                                   +---v--+
L=1                            |   1  |                                   |   2  |
                        +------+------+------+                     +------+------+-------+
                        |                    |                     |                     |
                        |                    |                     |                     |
                        |                    |                     |                     |
                    +---v--+             +---v--+              +---v--+              +---v--+
L=2                 |   3  |             |   4  |              |   5  |              |   6  |
                 +--+------+-+         +-+------+--+        +--+------+--+         +-+------+--+
                 |           |         |           |        |            |         |           |
                 |           |         |           |        |            |         |           |
                 |           |         |           |        |            |         |           |
              +--v---+   +---v--+   +--v---+   +---v--+   +-v----+   +---v--+   +--v---+   +---v--+
L=3           |  7   |   |   8  |   |  9   |   |  10  |   |  11  |   |  12  |   |  13  |   |  14  |
              +------+   +------+   +------+   +------+   +------+   +------+   +------+   +------+
               8K大小即page size

是一个完全二叉树,树的层高可以自定义,目前限制在30层内,默认是11层。
最底层是真正的chunk描述,最底层每个叶子是一个paage,大小为8K。那么当层数是11层时,chunk的size是16M。因为11层的话,最下面一层叶子是2的11次方,再乘以8K正好是16MB。
这棵树中每个节点还对对应其相应的大小是否被分配。什么叫其相应的大小?是这样的,每一层代表需要分配的大小的档次。暂且用档次这个词吧。最上面是16MB档次,最下面是8K档次,从最上面开始往下走一层,档次就除以2。
每次申请内存时,netty会先对其做规格化,所谓规格化就是最接近申请内存值的2de整数次幂。比如我申请900byte,那么规格化后就是1K。在规格化后,netty会在树上标志 0 1 3 7被使用了。下次要再申请8K内存时就要避开这个路径了,只能是 0 1 3 8 了,因为7那边已经不够了。其他大小同理。所以树上的节点是为了标志是否被使用过,以使得内存碎片减少尽量靠左紧凑分配。 对于单page内的内存使用浪费问题,netty又做了一层位图结构使其得以利用。对于chunk对象的查找,netty还做了缓存机制,下面有讲。

作业

仔细调试 1K 2k 3K 8K 11K 内存的多次分配与回收。

PoolArena

PoolArena 这一层负责创建与维护PoolChunk,维护的方式是将用到的正在分配中的PoolChunk放到PoolChunkList这个列表中。
PoolChunkList是一个链是结构。
而且,PoolArena还按PoolChunk的使用量分别维护到相对应的PoolChunkList中。

// abstract class PoolArena<T> implements PoolArenaMetric {
private final PoolChunkList<T> q050;
private final PoolChunkList<T> q025;
private final PoolChunkList<T> q000;
private final PoolChunkList<T> qInit;
private final PoolChunkList<T> q075;
private final PoolChunkList<T> q100;

这些PoolChunkList也是按使用量大小有序的链式的串在一起(参见PoolArena构造方法中初始化这些list字段的代码),当使用量达到本级别时,会加入到下一级别的list中,比如达到25%了,那么就会加到50%列表中了。(参见io.netty.buffer.PoolChunkList.add(PoolChunk))

void add(PoolChunk<T> chunk) {
    if (chunk.usage() >= maxUsage) {
        nextList.add(chunk);
        return;
    }
    add0(chunk);
}

PoolArenad的cache与Recycler对象池

PooledByteBuf依赖PoolThreadCache做了一层对PoolChunk的缓存,PoolThreadCache靠MemoryRegionCache实现缓存。MemoryRegionCache靠队列来实现对PoolChunk的缓存(参见下面代码1),MemoryRegionCache在buf释放时会调用其add接口将释放的PoolChunk对象通过io.netty.buffer.PoolThreadCache.MemoryRegionCache.Entry对象包装后加入(offer)到队列(参见下面堆栈1)。在io.netty.buffer.PoolThreadCache.MemoryRegionCache.allocate(PooledByteBuf, int)时再从队列中直接poll出来,达成cache的目的。优化还没有结束,包装PoolChunk用的Entry对象是通过Recycler对象池完成分配(获取)已释放的。对象是本质上一个通过FastThreadLocal的Stack的数据结构,分配对应出栈,释放对象入栈。具体参见下面代码2。
Recycler
是一个基于ThreadLocal结合stack玩起来的一个对象池数据结构,像上述这种就是PooledUnsafeDirectByteBuf的对象pool。回收的时候压栈,要用的时候出栈。
获取对象 io.netty.util.Recycler.get()
回收对象 io.netty.util.Recycler.DefaultHandle.recycle(Object)

代码1: 队列初始化

Queue<Entry<T>> queue = PlatformDependent.newFixedMpscQueue(this.size);

堆栈1:buf释放时会调用MemoryRegionCache add接口将释放的PoolChunk对象包装后入队:

Thread [main] (Suspended (breakpoint at line 393 in PoolThreadCache$MemoryRegionCache)) 
    PoolThreadCache$SubPageMemoryRegionCache<T>(PoolThreadCache$MemoryRegionCache<T>).add(PoolChunk<T>, ByteBuffer, long) line: 393 
    PoolThreadCache.add(PoolArena<?>, PoolChunk, ByteBuffer, long, int, SizeClass) line: 209    
    PoolArena$DirectArena(PoolArena<T>).free(PoolChunk<T>, ByteBuffer, long, int, PoolThreadCache) line: 273    
    PooledUnsafeDirectByteBuf(PooledByteBuf<T>).deallocate() line: 171  
    PooledUnsafeDirectByteBuf(AbstractReferenceCountedByteBuf).release0(int) line: 136  
    PooledUnsafeDirectByteBuf(AbstractReferenceCountedByteBuf).release() line: 124  
    PooledByteBufTest.main(String[]) line: 43   

代码2:Entry对象使用对象池

private static final Recycler<Entry> RECYCLER = new Recycler<Entry>() {
    @SuppressWarnings("unchecked")
    @Override
    protected Entry newObject(Handle<Entry> handle) {
        return new Entry(handle);
    }
};

private static Entry newEntry(PoolChunk<?> chunk, ByteBuffer nioBuffer, long handle) {
    Entry entry = RECYCLER.get();
    entry.chunk = chunk;
    entry.nioBuffer = nioBuffer;
    entry.handle = handle;
    return entry;
}

@Override
public void recycle(Object object) {
    if (object != value) {
        throw new IllegalArgumentException("object does not belong to handle");
    }

    Stack<?> stack = this.stack;
    if (lastRecycledId != recycleId || stack == null) {
        throw new IllegalStateException("recycled already");
    }

    stack.push(this);
}

[netty4][netty-buffer]netty之池化buffer

标签:prot   void   html   static   some   define   class   abstract   fas   

原文地址:https://www.cnblogs.com/simoncook/p/11967186.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!