float InvSqrt(float x )
{
float xhalf = 0.5f * x;
int i = *( int *)& x;
i = 0x5f3759df - ( i>>1);
x = *( float *)& i;
x = x * (1.5f - xhalf * x * x);
return x;
}关于该段代码的更多说明,请参看这篇文章《0x5f3759df的数学原理》。#include "stdafx.h"
#include <stdio.h>
#include <stdlib.h>
#include <windows.h>
#include <math.h>
// 开平方取倒数
float InvSqrt(float x )
{
float xhalf = 0.5f * x;
int i = *( int *)& x;
i = 0x5f3759df - ( i>>1);
x = *( float *)& i;
x = x * (1.5f - xhalf * x * x);
return x;
}
int main()
{
// 比较精度
float val = 0.0f;
val = 1.0f;
printf("计算精度比较: \n");
printf("输入值: %f 快速算法: %f VC函数: %f \n", val, InvSqrt(val), 1.0f / sqrt(val));
val = 16.0f;
printf("输入值: %f 快速算法: %f VC函数: %f \n", val, InvSqrt(val), 1.0f / sqrt(val));
val = 25.0f;
printf("输入值: %f 快速算法: %f VC函数: %f \n", val, InvSqrt(val), 1.0f / sqrt(val));
val = 100.0f;
printf("输入值: %f 快速算法: %f VC函数: %f \n", val, InvSqrt(val), 1.0f / sqrt(val));
printf("\n计算性能比较: \n");
int count = 1000000;
DWORD timeStart = 0, timeEnd = 0;
timeStart = GetTickCount();
for (int i = 0; i < count; i++)
{
val = InvSqrt(100.0f);
}
timeEnd = GetTickCount();
printf("快速算法耗时: %f \n", (timeEnd - timeStart) * 0.001);
timeStart = GetTickCount();
for (int i = 0; i < count; i++)
{
val = 1.0f / sqrt(100.0f);
}
timeEnd = GetTickCount();
printf("VC函数耗时: %f \n", (timeEnd - timeStart) * 0.001);
printf("\n");
system("pause");
return 0;
} 这里与sqrt()分别比较了计算精度及计算性能,测试环境为vs2005,普通pc笔记本(其实是一台年久的、玩的了游戏、写得了代码的小黑)。从对比结果看,该快速算法在计算结果上有一点点误差,但是计算性能上很可观。下图为对比结果:原文地址:http://blog.csdn.net/grafx/article/details/40629499