标签:b+树 最小 inno 创建索引 查询优化 优化 回顾 主键 存在
数据都是存在优盘上,查询数据时必须要进行io操作
索引在mysql中也叫‘键’, 是存储引擎用于快速找到记录的一种数据结构
primary key
unique key
index key
primary key 与 unique key 除了有加速效果外还有约束效果
index只有加速效果
本质就是:通过不断地缩小想要获取数据的范围来筛选出最终想要的结果,同时把随机的事件变成顺序的事件,也就是说,有了这种索引机制,我们可以总是用同一种查找方式来锁定数据。**
索引的影响:
1.在表中有大量的数据时,创建索引速度会很慢
2.创建好索引后,表的查询变得高效,但是写的会降低,增查时会巨慢
https://images2017.cnblogs.com/blog/1036857/201709/1036857-20170912011123500-158121126.png
只有叶子结点存放真实数据,根和树枝节点存的仅仅是虚拟数据
查询次数由树的层级决定,层级越低次数越少
一个磁盘块儿的大小是一定的,那也就意味着能存的数据量是一定的。如何保证树的层级最低呢?一个磁盘块儿存放占用空间比较小的数据项
思考我们应该给我们一张表里面的什么字段字段建立索引能够降低树的层级高度>>> 主键id字段
聚集索引其实指的就是表的主键,innodb引擎规定一张表中必须要有主键。先来回顾一下存储引擎。
myisam在建表的时候对应到硬盘有几个文件(三个)?
innodb在建表的时候对应到硬盘有几个文件(两个)?frm文件只存放表结构,不可能放索引,也就意味着innodb的索引跟数据都放在idb表数据文件中。
特点:叶子结点放的一条条完整的记录
辅助索引:查询数据的时候不可能都是用id作为筛选条件,也可能会用name,password等字段信息,那么这个时候就无法利用到聚集索引的加速查询效果。就需要给其他字段建立索引,这些索引就叫辅助索引
特点:叶子结点存放的是辅助索引字段对应的那条记录的主键的值(比如:按照name字段创建索引,那么叶子节点存放的是:{name对应的值:name所在的那条记录的主键值})
select name from user where name=‘jason‘;
上述语句叫覆盖索引:只在辅助索引的叶子节点中就已经找到了所有我们想要的数据
select age from user where name=‘jason‘;
上述语句叫非覆盖索引,虽然查询的时候命中了索引字段name,但是要查的是age字段,所以还需要利用主键才去查找
最后慢查询日志
设定好一个时间检测所有超出改时间的sql语句,然后对他们进行优化
执行计划:让mysql预估执行操作(一般正确)
all < index < range < index_merge < ref_or_null < ref < eq_ref < system/const
id,email
慢:
select * from userinfo3 where name='alex'
explain select * from userinfo3 where name='alex'
type: ALL(全表扫描)
select * from userinfo3 limit 1;
快:
select * from userinfo3 where email='alex'
type: const(走索引)
0.先运行看看是否真的很慢,注意设置SQL_NO_CACHE
1.where条件单表查,锁定最小返回记录表。这句话的意思是把查询语句的where都应用到表中返回的记录数最小的表开始查起,单表每个字段分别查询,看哪个字段的区分度最高
2.explain查看执行计划,是否与1预期一致(从锁定记录较少的表开始查询)
3.order by limit 形式的sql语句让排序的表优先查
4.了解业务方使用场景
5.加索引时参照建索引的几大原则
6.观察结果,不符合预期继续从0分析
标签:b+树 最小 inno 创建索引 查询优化 优化 回顾 主键 存在
原文地址:https://www.cnblogs.com/godlover/p/12056922.html