标签:多线程 import 数据处理 amp ges col code 读取 tar
import numpy as np import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data # 读取文件。 filename_queue = tf.train.string_input_producer(["F:\\output.tfrecords"]) reader = tf.TFRecordReader() _,serialized_example = reader.read(filename_queue)
# 解析读取的样例。 features = tf.parse_single_example(serialized_example,features={‘image_raw‘:tf.FixedLenFeature([],tf.string),‘pixels‘:tf.FixedLenFeature([],tf.int64),‘label‘:tf.FixedLenFeature([],tf.int64)})
images = tf.decode_raw(features[‘image_raw‘],tf.uint8) labels = tf.cast(features[‘label‘],tf.int32) pixels = tf.cast(features[‘pixels‘],tf.int32)
sess = tf.Session() # 启动多线程处理输入数据。 coord = tf.train.Coordinator() threads = tf.train.start_queue_runners(sess=sess,coord=coord)
for i in range(10): image, label, pixel = sess.run([images, labels, pixels]) print(label)
吴裕雄--天生自然 pythonTensorFlow图形数据处理:读取MNIST手写图片数据写入的TFRecord文件
标签:多线程 import 数据处理 amp ges col code 读取 tar
原文地址:https://www.cnblogs.com/tszr/p/12064986.html