码迷,mamicode.com
首页 > 编程语言 > 详细

求解最大公约数——欧几里得算法及其(解同余方程)拓展

时间:2014-10-31 15:49:21      阅读:373      评论:0      收藏:0      [点我收藏+]

标签:欧几里得   拓展欧几里得   gcd   拓展gcd   线性同余方程   

最大公约数的求法中最过著名的莫过于欧几里得辗展相除法,它有两种形式(递归与非递归,其实是一样的,任何递归都可以写成非递归),下面看看GCD的实现代码:

/***求a,b最大公约数***/
long long gcd(long long a, long long b) {
        if(b == 0)
                return a;
        else
                return gcd(b, a % b);
}


證明过程(摘自维基百科:zh.wikipedia.org/wiki/輾轉相除法)


bubuko.com,布布扣
欲證bubuko.com,布布扣

先設

  • bubuko.com,布布扣
  • bubuko.com,布布扣

bubuko.com,布布扣
可得bubuko.com,布布扣且知bubuko.com,布布扣
表示d是b,r的公因數,但bubuko.com,布布扣
所以bubuko.com,布布扣


bubuko.com,布布扣
可得bubuko.com,布布扣且知bubuko.com,布布扣
表示e是a,b的公因數,但bubuko.com,布布扣
所以bubuko.com,布布扣

bubuko.com,布布扣可得知
bubuko.com,布布扣


扩展的欧几里德算法是求如a * x + b * y = (a, b) 这样的整数解的,可以仿照欧几里德算法得出答案。程序如下:

/***扩展的欧几里德算法a*x + b*y = Gcd(a,b)的一组整数解,结果存在x,y中***/
void extend_gcd(long long a, long long b, long long& x, long long &y) {
        if(b == 0) {
                x = 1;
                y = 0;
                return;
        }
        extend_gcd(b, a % b, x, y);
        long long tmp = x;
        x = y;
        y = tmp - a / b * y;
}

上述程序只是得到了一组解,很显然解是不唯一的:x增加b, y减少a一定是原方程的一组解:

a *  (x + b)  + b * (y - a) = a * x + b * y = (a, b)。

然而在应用上,往往并不是如此简单,很多时候会求解不定方程a * x + b * y = n。这个时候还是应用上面的算法:

  1. 求(a,b), 设c = (a,b),如果! c|n,则不存在整数解。因为将上式左右两边都除以c,可以知道,左边为整数,右边为非整数,故矛盾。
  2. 将左右两边同时除以c,设得到新的方程为a‘ * x + b‘ * y = n‘,应用上述算法求a‘ * x + b‘ * y = 1的解(由第一步知道(a‘,b‘) = 1)。设结果为x‘, y‘。
  3. x = x‘ * n‘ , y = y‘ * n‘是方程a * x + b * y = n。这个比较好理解,将a‘ * x + b‘ * y = 1两边同时扩大n‘倍就行了。
  4. x = x‘ * n‘ + t * b, y = y‘ * n‘ - t * a(t为整数)是原方程a * x + b * y = n的所有解。
线性同余方程实现代码:

/*
  扩展欧几里得定理
  扩展欧几里得定理:对于两个不全为0的整数a、b,必存在一组解x,y,
  使得ax+by==gcd(a,b);
  拓展欧几里得实现
  下面面的程序中,x和y用全局变量保存
  int gcd(int a,int b)
  {
    int t,d;
    if(b==0)
    {
        x=1;
        y=0; 
	//此时b==0,也就是说gcd(a,0)==a。原式变为ax+by==a=gcd(a,b)--> x==1,y==0
        return a; //返回a,b最大公约数的值 
    }
    d=gcd(b,a%b); //欧几里得求最大公约数应用 
    t=x;
    x=y;
    y=t-(a/b)*y;  //不明处2
    return d;     //返回a,b最大公约数的值
  } 
  //不明处2 解释 ax+by==gcd(a,b)(1) 
    说明规则,x,y表示第一次递归时的值,x1,y1表示第二次递归时的值。
	那么gcd(a,b)==gcd(b,a%b),同时都代入式1,
	有ax+by==b*x1+(a%b)*y1。将右边变形一下
    b*x1+(a%b)*y1==b*x1+(a-(a/b)*b)*y1==a*y1+b*(x1-(a/b)*y1),
	最终得到ax+by==a*y1+b*(x1-(a/b)*y1)
    也就是说: 
	上一深度的x等于下一深度的y1,
	上一深度的y等于下一深度的x1-(a/b)*y1。 
   *需要注意,上面推导时用的除法都是整型除法

    因此,得到了不定式ax+by==gcd(a,b)的一组解,x、y。
    那么对于一般的不定式ax+by==c,它的解应该是什么呢。
	很简单,x1=x*(c/gcd(a,b)),y1=y*(c/gcd(a,b)) 
	
	再深入一点,就解出这么一组解其实一般来说是解决不了什么问题的,
	我们现在要得到所有的解,那么这所有的解究竟是什么呢?
	假设d=gcd(a,b). 那么x=x0+b/d*t; y=y0-a/d*t;其中t为任意常整数。
  
*/ 


#include<stdio.h>
#include<stdlib.h>

/*
  求关于 x 的同余方程 ax ≡ 1 (mod b)的最小正整数解。
  即求ax=mb+r 1=nb+r
  变形ax+(n-m)b=1,此方程即拓展欧几里德的应用ax+by=gcd(a,b),(n-m相当于y)
  事实上ax ≡1(mod b) 有解的必要条件是gcd(a,b)|1,即gcd(a,b)=1; 
  使用拓展欧几里得可知 ax+by=1(x,y是整数) 
*/

int  Extragcd(int a,int b,int *x,int *y)
{
	int d,t;
	if(b==0)  //递归调用终止条件,当根据欧几里得辗转相除法则,余数为0停止 
	{
		*x=1;
		*y=0;
		return a;
	}
	else
	{
		d=Extragcd(b,a%b,x,y);
		t=*x;     //根据下一个x1,y1的值,倒推前一个x,y的值 
		*x=*y;
		*y=t-a/b*(*y);
		return d;
	}
}

int main()
{
	int a,b,x,y;
	int ans;
	freopen("mod.in","r",stdin);
	freopen("mod.out","w",stdout); 
	scanf("%d%d",&a,&b);
	ans=Extragcd(a,b,&x,&y);
	if(ans!=1) return 0;
	//根据若x是方程的一个解,则方程的所有解为x+k*b k为整数 
    x=x%b; //保证最小的正整数解x ,且x属于{0,1,2,3...b-1} 
    while(x<=0)
        x+=b ;
    printf("%d\n",x);
    return 0;
} 







求解最大公约数——欧几里得算法及其(解同余方程)拓展

标签:欧几里得   拓展欧几里得   gcd   拓展gcd   线性同余方程   

原文地址:http://blog.csdn.net/txl199106/article/details/40653615

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!