标签:alpha logs __name__ htm 实现 pyplot break bin eps
https://www.cnblogs.com/shenxiaolin/p/8637794.html
# !/usr/bin/env python # encoding: utf-8 __author__ = ‘Scarlett‘ #矩阵分解在打分预估系统中得到了成熟的发展和应用 # from pylab import * import matplotlib.pyplot as plt from math import pow import numpy def matrix_factorization(R,P,Q,K,steps=5000,alpha=0.0002,beta=0.02): Q=Q.T # .T操作表示矩阵的转置 result=[] for step in range(steps): for i in range(len(R)): for j in range(len(R[i])): if R[i][j]>0: eij=R[i][j]-numpy.dot(P[i,:],Q[:,j]) # .dot(P,Q) 表示矩阵内积 for k in range(K): P[i][k]=P[i][k]+alpha*(2*eij*Q[k][j]-beta*P[i][k]) Q[k][j]=Q[k][j]+alpha*(2*eij*P[i][k]-beta*Q[k][j]) eR=numpy.dot(P,Q) e=0 for i in range(len(R)): for j in range(len(R[i])): if R[i][j]>0: e=e+pow(R[i][j]-numpy.dot(P[i,:],Q[:,j]),2) for k in range(K): e=e+(beta/2)*(pow(P[i][k],2)+pow(Q[k][j],2)) result.append(e) if e<0.001: break return P,Q.T,result if __name__ == ‘__main__‘: R=[ [5,3,0,1], [4,0,0,1], [1,1,0,5], [1,0,0,4], [0,1,5,4] ] R=numpy.array(R) N=len(R) M=len(R[0]) K=2 P=numpy.random.rand(N,K) #随机生成一个 N行 K列的矩阵 Q=numpy.random.rand(M,K) #随机生成一个 M行 K列的矩阵 nP,nQ,result=matrix_factorization(R,P,Q,K) print("原始的评分矩阵R为:\n",R) R_MF=numpy.dot(nP,nQ.T) print("经过MF算法填充0处评分值后的评分矩阵R_MF为:\n",R_MF) #-------------损失函数的收敛曲线图--------------- n=len(result) x=range(n) plt.plot(x,result,color=‘r‘,linewidth=3) plt.title("Convergence curve") plt.xlabel("generation") plt.ylabel("loss") plt.show()
标签:alpha logs __name__ htm 实现 pyplot break bin eps
原文地址:https://www.cnblogs.com/zhangbojiangfeng/p/12095701.html