码迷,mamicode.com
首页 > 编程语言 > 详细

Python_opencv_傅里叶变换

时间:2019-12-29 18:49:07      阅读:103      评论:0      收藏:0      [点我收藏+]

标签:flag   频率   关心   jpg   plot   傅里叶变换   现在   ack   back   

傅里叶变化

  • 含义: 与时域对比,傅里叶变化更关心的是在频率域所发生的事情

傅里叶变化的作用

  • 高频 变化剧烈的灰度分量 比如图像边界
  • 低频 变化缓慢的灰度分量 灰度均匀区域

    滤波

  • 低通滤波器: 只保留低频信息 边界会模糊
  • 高通滤波器: 只保留高频信息 增强图像细节

    示例

  • 对图像进行傅里叶变换,并显示

img = cv2.imread(r"E:\2019PythonProject\OpencvTest\123.jpg",0)
# 图像数据要转换成float32
img_float32 = np.float32(img)
#进行傅里叶变换
dft = cv2.dft(img_float32,flags = cv2.DFT_COMPLEX_OUTPUT)
# 将低频信息转换至图像中心
dft_shift = np.fft.fftshift(dft)
# 傅里叶变换后的数据是由实部虚部构成的,需要进行转换成图像格式才能显示(0,255)
magnitude = 20*np.log(cv2.magnitude(dft_shift[:,:,0],dft_shift[:,:,1]))
plt.subplot(121),plt.imshow(img,cmap = 'gray')
plt.subplot(122),plt.imshow(magnitude,cmap='gray')
plt.show()

技术图片

  • 在傅里叶变换后,利用高通滤波器获取图像边缘
# 获取图像尺寸 与 中心坐标
rows,cols = img.shape
crow,ccol = int(rows/2),int(cols/2)
# 创建高通掩码
mask = np.ones((rows,cols,2),np.uint8)
mask_size = 20
mask[crow - mask_size:crow +mask_size, ccol -mask_size:ccol+mask_size] = 0
# 掩码与傅里叶图像按位相乘  去除低频区域
fshift = dft_shift * mask
# 之前把低频转换到了图像中间,现在需要重新转换回去
f_ishift = np.fft.ifftshift(fshift)
# 傅里叶逆变换
img_back = cv2.idft(f_ishift)
img_back = cv2.magnitude(img_back[:,:,0],img_back[:,:,1])
plt.subplot(121),plt.imshow(img,cmap = 'gray')
plt.subplot(122),plt.imshow(img_back,cmap='gray')
plt.show()

技术图片

Python_opencv_傅里叶变换

标签:flag   频率   关心   jpg   plot   傅里叶变换   现在   ack   back   

原文地址:https://www.cnblogs.com/wangxiaobei2019/p/12115578.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!