标签:比较 sig 类型 i++ 假设 矩阵 实现 str 问题
跑起来的效果看每个类的test方法,自己调用来测试
目的是看看哪个算法好用,移植的时候比较单纯没有研究懂算法,代码结构也没改动,只是移植到C#方便查看代码和测试,大家要拷贝也很方便,把整个类拷贝到.cs文件即可
第一段算法来自 模糊PID控制算法的C++实现 :blog。csdn。net/shuoyueqishilove/article/details/78236541
这段算法在实际值低于目标值是工作正常,超过后会有问题,不知道如何调教
using System; using System.Collections.Generic; using System.Diagnostics; using System.Linq; using System.Text; using System.Threading.Tasks; namespace FuzzyPID { class FuzzyPID { public const int N = 7; double target; //系统的控制目标 double actual; //采样获得的实际值 double e; //误差 double e_pre_1; //上一次的误差 double e_pre_2; //上上次的误差 double de; //误差的变化率 double emax; //误差基本论域上限 double demax; //误差辩化率基本论域的上限 double delta_Kp_max; //delta_kp输出的上限 double delta_Ki_max; //delta_ki输出上限 double delta_Kd_max; //delta_kd输出上限 double Ke; //Ke=n/emax,量化论域为[-3,-2,-1,0,1,2,3] double Kde; //Kde=n/demax,量化论域为[-3,-2,-1,0,1,2,3] double Ku_p; //Ku_p=Kpmax/n,量化论域为[-3,-2,-1,0,1,2,3] double Ku_i; //Ku_i=Kimax/n,量化论域为[-3,-2,-1,0,1,2,3] double Ku_d; //Ku_d=Kdmax/n,量化论域为[-3,-2,-1,0,1,2,3] int[,] Kp_rule_matrix = new int[N, N];//Kp模糊规则矩阵 int[,] Ki_rule_matrix = new int[N, N];//Ki模糊规则矩阵 int[,] Kd_rule_matrix = new int[N, N];//Kd模糊规则矩阵 string mf_t_e; //e的隶属度函数类型 string mf_t_de; //de的隶属度函数类型 string mf_t_Kp; //kp的隶属度函数类型 string mf_t_Ki; //ki的隶属度函数类型 string mf_t_Kd; //kd的隶属度函数类型 double[] e_mf_paras; //误差的隶属度函数的参数 double[] de_mf_paras;//误差的偏差隶属度函数的参数 double[] Kp_mf_paras; //kp的隶属度函数的参数 double[] Ki_mf_paras; //ki的隶属度函数的参数 double[] Kd_mf_paras; //kd的隶属度函数的参数 double Kp; double Ki; double Kd; double A; double B; double C; public FuzzyPID(double e_max, double de_max, double kp_max, double ki_max, double kd_max, double Kp0, double Ki0, double Kd0) { emax = e_max; demax = de_max; delta_Kp_max = kp_max; delta_Ki_max = ki_max; delta_Kd_max = kd_max; e = target - actual; de = e - e_pre_1; Ke = (N / 2) / emax; Kde = (N / 2) / demax; Ku_p = delta_Kp_max / (N / 2); Ku_i = delta_Ki_max / (N / 2); Ku_d = delta_Kd_max / (N / 2); Kp = Kp0; Ki = Ki0; Kd = Kd0; A = Kp + Ki + Kd; B = -2 * Kd - Kp; C = Kd; } //三角隶属度函数 double trimf(double x, double a, double b, double c) { double u; if (x >= a && x <= b) u = (x - a) / (b - a); else if (x > b && x <= c) u = (c - x) / (c - b); else u = 0; return u; } //正态隶属度函数 double gaussmf(double x, double ave, double sigma) { double u; if (sigma < 0) { throw new Exception("In gaussmf, sigma must larger than 0"); } u = Math.Exp(-Math.Pow(((x - ave) / sigma), 2)); return u; } //梯形隶属度函数 double trapmf(double x, double a, double b, double c, double d) { double u; if (x >= a && x < b) u = (x - a) / (b - a); else if (x >= b && x < c) u = 1; else if (x >= c && x <= d) u = (d - x) / (d - c); else u = 0; return u; } //设置模糊规则Matrix public void setRuleMatrix(int[,] kp_m, int[,] ki_m, int[,] kd_m) { for (int i = 0; i < N; i++) for (int j = 0; j < N; j++) { Kp_rule_matrix[i, j] = kp_m[i, j]; Ki_rule_matrix[i, j] = ki_m[i, j]; Kd_rule_matrix[i, j] = kd_m[i, j]; } } //设置模糊隶属度函数的子函数 void setMf_sub(string type, double[] paras, int n) { int N_mf_e = 0, N_mf_de = 0, N_mf_Kp = 0, N_mf_Ki = 0, N_mf_Kd = 0; switch (n) { case 0: if (type == "trimf" || type == "gaussmf" || type == "trapmf") mf_t_e = type; else throw new Exception("Type of membership function must be \"trimf\" or \"gaussmf\" or \"trapmf\""); if (mf_t_e == "trimf") N_mf_e = 3; else if (mf_t_e == "gaussmf") N_mf_e = 2; else if (mf_t_e == "trapmf") N_mf_e = 4; e_mf_paras = new double[N * N_mf_e]; for (int i = 0; i < N * N_mf_e; i++) e_mf_paras[i] = paras[i]; break; case 1: if (type == "trimf" || type == "gaussmf" || type == "trapmf") mf_t_de = type; else throw new Exception("Type of membership function must be \"trimf\" or \"gaussmf\" or \"trapmf\""); if (mf_t_de == "trimf") N_mf_de = 3; else if (mf_t_de == "gaussmf") N_mf_de = 2; else if (mf_t_de == "trapmf") N_mf_de = 4; de_mf_paras = new double[N * N_mf_de]; for (int i = 0; i < N * N_mf_de; i++) de_mf_paras[i] = paras[i]; break; case 2: if (type == "trimf" || type == "gaussmf" || type == "trapmf") mf_t_Kp = type; else throw new Exception("Type of membership function must be \"trimf\" or \"gaussmf\" or \"trapmf\""); if (mf_t_Kp == "trimf") N_mf_Kp = 3; else if (mf_t_Kp == "gaussmf") N_mf_Kp = 2; else if (mf_t_Kp == "trapmf") N_mf_Kp = 4; Kp_mf_paras = new double[N * N_mf_Kp]; for (int i = 0; i < N * N_mf_Kp; i++) Kp_mf_paras[i] = paras[i]; break; case 3: if (type == "trimf" || type == "gaussmf" || type == "trapmf") mf_t_Ki = type; else throw new Exception("Type of membership function must be \"trimf\" or \"gaussmf\" or \"trapmf\""); if (mf_t_Ki == "trimf") N_mf_Ki = 3; else if (mf_t_Ki == "gaussmf") N_mf_Ki = 2; else if (mf_t_Ki == "trapmf") N_mf_Ki = 4; Ki_mf_paras = new double[N * N_mf_Ki]; for (int i = 0; i < N * N_mf_Ki; i++) Ki_mf_paras[i] = paras[i]; break; case 4: if (type == "trimf" || type == "gaussmf" || type == "trapmf") mf_t_Kd = type; else throw new Exception("Type of membership function must be \"trimf\" or \"gaussmf\" or \"trapmf\""); if (mf_t_Kd == "trimf") N_mf_Kd = 3; else if (mf_t_Kd == "gaussmf") N_mf_Kd = 2; else if (mf_t_Kd == "trapmf") N_mf_Kd = 4; Kd_mf_paras = new double[N * N_mf_Kd]; for (int i = 0; i < N * N_mf_Kd; i++) Kd_mf_paras[i] = paras[i]; break; default: break; } } //设置模糊隶属度函数的类型和参数 public void setMf(string mf_type_e, double[] e_mf, string mf_type_de, double[] de_mf, string mf_type_Kp, double[] Kp_mf, string mf_type_Ki, double[] Ki_mf, string mf_type_Kd, double[] Kd_mf) { setMf_sub(mf_type_e, e_mf, 0); setMf_sub(mf_type_de, de_mf, 1); setMf_sub(mf_type_Kp, Kp_mf, 2); setMf_sub(mf_type_Ki, Ki_mf, 3); setMf_sub(mf_type_Kd, Kd_mf, 4); } //实现模糊控制 public double realize(double t, double a) { double[] u_e = new double[N], u_de = new double[N], u_u = new double[N]; int[] u_e_index = new int[3], u_de_index = new int[3];//假设一个输入最多激活3个模糊子集 double delta_Kp, delta_Ki, delta_Kd; double delta_u; target = t; actual = a; e = target - actual; de = e - e_pre_1; e = Ke * e; de = Kde * de; /* 将误差e模糊化*/ int j = 0; for (int i = 0; i < N; i++) { if (mf_t_e == "trimf") u_e[i] = trimf(e, e_mf_paras[i * 3], e_mf_paras[i * 3 + 1], e_mf_paras[i * 3 + 2]);//e模糊化,计算它的隶属度 else if (mf_t_e == "gaussmf") u_e[i] = gaussmf(e, e_mf_paras[i * 2], e_mf_paras[i * 2 + 1]);//e模糊化,计算它的隶属度 else if (mf_t_e == "trapmf") u_e[i] = trapmf(e, e_mf_paras[i * 4], e_mf_paras[i * 4 + 1], e_mf_paras[i * 4 + 2], e_mf_paras[i * 4 + 3]);//e模糊化,计算它的隶属度 if (u_e[i] != 0) u_e_index[j++] = i; //存储被激活的模糊子集的下标,可以减小计算量 } for (; j < 3; j++) u_e_index[j] = 0; //富余的空间填0 /*将误差变化率de模糊化*/ j = 0; for (int i = 0; i < N; i++) { if (mf_t_de == "trimf") u_de[i] = trimf(de, de_mf_paras[i * 3], de_mf_paras[i * 3 + 1], de_mf_paras[i * 3 + 2]);//de模糊化,计算它的隶属度 else if (mf_t_de == "gaussmf") u_de[i] = gaussmf(de, de_mf_paras[i * 2], de_mf_paras[i * 2 + 1]);//de模糊化,计算它的隶属度 else if (mf_t_de == "trapmf") u_de[i] = trapmf(de, de_mf_paras[i * 4], de_mf_paras[i * 4 + 1], de_mf_paras[i * 4 + 2], de_mf_paras[i * 4 + 3]);//de模糊化,计算它的隶属度 if (u_de[i] != 0) u_de_index[j++] = i; //存储被激活的模糊子集的下标,可以减小计算量 } for (; j < 3; j++) u_de_index[j] = 0; //富余的空间填0 double den = 0, num = 0; /*计算delta_Kp和Kp*/ for (int m = 0; m < 3; m++) for (int n = 0; n < 3; n++) { num += u_e[u_e_index[m]] * u_de[u_de_index[n]] * Kp_rule_matrix[u_e_index[m], u_de_index[n]]; den += u_e[u_e_index[m]] * u_de[u_de_index[n]]; } delta_Kp = num / den; delta_Kp = Ku_p * delta_Kp; if (delta_Kp >= delta_Kp_max) delta_Kp = delta_Kp_max; else if (delta_Kp <= -delta_Kp_max) delta_Kp = -delta_Kp_max; Kp += delta_Kp; if (Kp < 0) Kp = 0; /*计算delta_Ki和Ki*/ den = 0; num = 0; for (int m = 0; m < 3; m++) for (int n = 0; n < 3; n++) { num += u_e[u_e_index[m]] * u_de[u_de_index[n]] * Ki_rule_matrix[u_e_index[m], u_de_index[n]]; den += u_e[u_e_index[m]] * u_de[u_de_index[n]]; } delta_Ki = num / den; delta_Ki = Ku_i * delta_Ki; if (delta_Ki >= delta_Ki_max) delta_Ki = delta_Ki_max; else if (delta_Ki <= -delta_Ki_max) delta_Ki = -delta_Ki_max; Ki += delta_Ki; if (Ki < 0) Ki = 0; /*计算delta_Kd和Kd*/ den = 0; num = 0; for (int m = 0; m < 3; m++) for (int n = 0; n < 3; n++) { num += u_e[u_e_index[m]] * u_de[u_de_index[n]] * Kd_rule_matrix[u_e_index[m], u_de_index[n]]; den += u_e[u_e_index[m]] * u_de[u_de_index[n]]; } delta_Kd = num / den; delta_Kd = Ku_d * delta_Kd; if (delta_Kd >= delta_Kd_max) delta_Kd = delta_Kd_max; else if (delta_Kd <= -delta_Kd_max) delta_Kd = -delta_Kd_max; Kd += delta_Kd; if (Kd < 0) Kd = 0; A = Kp + Ki + Kd; B = -2 * Kd - Kp; C = Kd; delta_u = A * e + B * e_pre_1 + C * e_pre_2; delta_u = delta_u / Ke; if (delta_u >= 0.95 * target) delta_u = 0.95 * target; else if (delta_u <= -0.95 * target) delta_u = -0.95 * target; e_pre_2 = e_pre_1; e_pre_1 = e; return delta_u; } void showMf(string type, double[] mf_paras) { int tab = 0; if (type == "trimf") tab = 2; else if (type == "gaussmf") tab = 1; else if (type == "trapmf") tab = 3; this.WriteLine($"函数类型:{mf_t_e}"); this.WriteLine("函数参数列表:"); double[] p = mf_paras; for (int i = 0; i < N * (tab + 1); i++) { this.Write(p[i] + " "); if (i % (tab + 1) == tab) this.Write("\r\n"); } } public void showInfo() { this.WriteLine("Info of this fuzzy controller is as following:"); this.WriteLine($"基本论域e:[{-emax},{emax}]"); this.WriteLine($"基本论域de:[{-demax},{demax}]"); this.WriteLine($"基本论域delta_Kp:[{-delta_Kp_max},{delta_Kp_max}]"); this.WriteLine($"基本论域delta_Ki:[{-delta_Ki_max},{delta_Ki_max}]"); this.WriteLine($"基本论域delta_Kd:[{-delta_Kd_max},{delta_Kd_max}]"); this.WriteLine("误差e的模糊隶属度函数参数:"); showMf(mf_t_e, e_mf_paras); this.WriteLine("误差变化率de的模糊隶属度函数参数:"); showMf(mf_t_de, de_mf_paras); this.WriteLine("delta_Kp的模糊隶属度函数参数:"); showMf(mf_t_Kp, Kp_mf_paras); this.WriteLine("delta_Ki的模糊隶属度函数参数:"); showMf(mf_t_Ki, Ki_mf_paras); this.WriteLine("delta_Kd的模糊隶属度函数参数:"); showMf(mf_t_Kd, Kd_mf_paras); this.WriteLine("模糊规则表:"); this.WriteLine("delta_Kp的模糊规则矩阵"); for (int i = 0; i < N; i++) { for (int j = 0; j < N; j++) { this.Write(Kp_rule_matrix[i, j]); } this.Write("\r\n"); } this.WriteLine("delta_Ki的模糊规则矩阵"); ; for (int i = 0; i < N; i++) { for (int j = 0; j < N; j++) { this.WriteLine(Ki_rule_matrix[i, j]); } WriteEnd(); } this.WriteLine("delta_Kd的模糊规则矩阵"); ; for (int i = 0; i < N; i++) { for (int j = 0; j < N; j++) { this.WriteLine(Kd_rule_matrix[i, j]); } WriteEnd(); } this.WriteLine($"误差的量化比例因子Ke={Ke}"); this.WriteLine($"误差变化率的量化比例因子Kde={Kde}"); this.WriteLine($"输出的量化比例因子Ku_p={Ku_p}"); this.WriteLine($"输出的量化比例因子Ku_i={Ku_i}"); this.WriteLine($"输出的量化比例因子Ku_d={Ku_d}"); this.WriteLine($"设定目标target={target}"); this.WriteLine($"误差e={e}"); this.WriteLine($"Kp={Kp}"); this.WriteLine($"Ki={Ki}"); this.WriteLine($"Kd={Kd}"); WriteEnd(); } public void Write(object str) { Console.Write(str); } public void WriteLine(object str) { Console.WriteLine(str); } public void WriteEnd() { Console.Write("\r\n"); } public static void test() { int NB = -3; int NM = -2; int NS = -1; int ZO = 0; int PS = 1; int PM = 2; int PB = 3; double target = 300; double actual = 400; double u = 0; int[,] deltaKpMatrix = new int[7, 7] {{PB,PB,PM,PM,PS,ZO,ZO }, {PB,PB,PM,PS,PS,ZO,NS }, {PM,PM,PM,PS,ZO,NS,NS}, {PM,PM,PS,ZO,NS,NM,NM}, {PS,PS,ZO,NS,NS,NM,NM}, {PS,ZO,NS,NM,NM,NM,NB}, {ZO,ZO,NM,NM,NM,NB,NB}}; int[,] deltaKiMatrix = new int[7, 7]{{NB,NB,NM,NM,NS,ZO,ZO}, {NB,NB,NM,NS,NS,ZO,ZO}, {NB,NM,NS,NS,ZO,PS,PS}, {NM,NM,NS,ZO,PS,PM,PM}, {NM,NS,ZO,PS,PS,PM,PB}, {ZO,ZO,PS,PS,PM,PB,PB}, {ZO,ZO,PS,PM,PM,PB,PB}}; int[,] deltaKdMatrix = new int[7, 7]{{PS,NS,NB,NB,NB,NM,PS}, {PS,NS,NB,NM,NM,NS,ZO}, {ZO,NS,NM,NM,NS,NS,ZO}, {ZO,NS,NS,NS,NS,NS,ZO}, {ZO,ZO,ZO,ZO,ZO,ZO,ZO}, {PB,NS,PS,PS,PS,PS,PB}, {PB,PM,PM,PM,PS,PS,PB}}; double[] e_mf_paras = { -3, -3, -2, -3, -2, -1, -2, -1, 0, -1, 0, 1, 0, 1, 2, 1, 2, 3, 2, 3, 3 }; double[] de_mf_paras = { -3, -3, -2, -3, -2, -1, -2, -1, 0, -1, 0, 1, 0, 1, 2, 1, 2, 3, 2, 3, 3 }; double[] Kp_mf_paras = { -3, -3, -2, -3, -2, -1, -2, -1, 0, -1, 0, 1, 0, 1, 2, 1, 2, 3, 2, 3, 3 }; double[] Ki_mf_paras = { -3, -3, -2, -3, -2, -1, -2, -1, 0, -1, 0, 1, 0, 1, 2, 1, 2, 3, 2, 3, 3 }; double[] Kd_mf_paras = { -3, -3, -2, -3, -2, -1, -2, -1, 0, -1, 0, 1, 0, 1, 2, 1, 2, 3, 2, 3, 3 }; var fuzzypid = new FuzzyPID(1500, 1000, 0.3, 0.9, 0.6, 0.01, 0.04, 0.01); fuzzypid.setMf("trimf", e_mf_paras, "trimf", de_mf_paras, "trimf", Kp_mf_paras, "trimf", Ki_mf_paras, "trimf", Kd_mf_paras); fuzzypid.setRuleMatrix(deltaKpMatrix, deltaKiMatrix, deltaKdMatrix); for (int i = 0; i < 50; i++) { u = fuzzypid.realize(target, actual); actual += u; Console.WriteLine($"{i} {target} {u} {actual}"); //if (i>19) //{ // target = 300; //} } //fuzzypid.showInfo(); } } }
第二段来自 模糊PID控制温控系统设计方案C语言程序代码: wenku。baidu。com/view/e62a94fbf342336c1eb91a37f111f18583d00cda.html
using System; using System.Collections.Generic; using System.Linq; using System.Text; using System.Threading.Tasks; namespace FuzzyPID { class FuzzyPID2 { int flag; int flag_start; double S_temp = 60.0; double P_temp = 20.0; double Kp; double Ki; double Kd; double Err = 0.0; double Last_Err = 0.0; double D_Err = 0.0; double Sum_Err = 0.0; double U = 0.0; //函数功能:PID的计算 void PID_Calculate() { Err = S_temp - P_temp; Sum_Err += Err; D_Err = Err - Last_Err; Last_Err = Err; U = Kp * Err + Ki * Sum_Err + Kd * D_Err; if (U >= 0) { if (U >= 200) U = 200; flag = 1; } else { U = -U; if (U >= 200) U = 200; flag = 0; } } /*********************************************** 函数功能:PID参数Kp的计算 ************************************************/ double fuzzy_kp(double e, double ec) //e,ec,表示误差,误差变化率 { double Kp_calcu; int num, pe, pec; double[] eRule = { -3.0, -2.0, -1.0, 0.0, 1.0, 2.0, 3.0 }; //误差E的模糊论域 double[] ecRule = { -3.0, -2.0, -1.0, 0.0, 1.0, 2.0, 3.0 }; //误差变化率EC的模糊论域 double[] eFuzzy = { 0.0, 0.0 }; //隶属于误差E的隶属程度 double[] ecFuzzy = { 0.0, 0.0 }; //隶属于误差变化率EC的隶属程度 double[] kpRule = { 0.0, 8.0, 16.0, 24.0 }; //Kp的模糊子集 double[] KpFuzzy = { 0.0, 0.0, 0.0, 0.0 }; //隶属于Kp的隶属程度 int[,] KpRule = //Kp的模糊控制表 7, 7 { { 3,3,3,3,3,3,3 }, { 2,2,2,2,1,2,2 }, { 1,1,1,1,1,1,1 }, { 1,1,0,1,0,1,1 }, { 0,0,1,0,0,1,0 }, { 0,1,0,1,0,0,2 }, { 3,3,3,3,3,3,3 } }; /*****误差E隶属函数描述*****/ if (e < eRule[0]) { eFuzzy[0] = 1.0; pe = 0; } else if (eRule[0] <= e && e < eRule[1]) { eFuzzy[0] = (eRule[1] - e) / (eRule[1] - eRule[0]); pe = 0; } else if (eRule[1] <= e && e < eRule[2]) { eFuzzy[0] = (eRule[2] - e) / (eRule[2] - eRule[1]); pe = 1; } else if (eRule[2] <= e && e < eRule[3]) { eFuzzy[0] = (eRule[3] - e) / (eRule[3] - eRule[2]); pe = 2; } else if (eRule[3] <= e && e < eRule[4]) { eFuzzy[0] = (eRule[4] - e) / (eRule[4] - eRule[3]); pe = 3; } else if (eRule[4] <= e && e < eRule[5]) { eFuzzy[0] = (eRule[5] - e) / (eRule[5] - eRule[4]); pe = 4; } else if (eRule[5] <= e && e < eRule[6]) { eFuzzy[0] = (eRule[6] - e) / (eRule[6] - eRule[5]); pe = 5; } else { eFuzzy[0] = 0.0; pe = 5; } eFuzzy[1] = 1.0 - eFuzzy[0]; /*****误差变化率EC隶属函数描述*****/ if (ec < ecRule[0]) { ecFuzzy[0] = 1.0; pec = 0; } else if (ecRule[0] <= ec && ec < ecRule[1]) { ecFuzzy[0] = (ecRule[1] - ec) / (ecRule[1] - ecRule[0]); pec = 0; } else if (ecRule[1] <= ec && ec < ecRule[2]) { ecFuzzy[0] = (ecRule[2] - ec) / (ecRule[2] - ecRule[1]); pec = 1; } else if (ecRule[2] <= ec && ec < ecRule[3]) { ecFuzzy[0] = (ecRule[3] - ec) / (ecRule[3] - ecRule[2]); pec = 2; } else if (ecRule[3] <= ec && ec < ecRule[4]) { ecFuzzy[0] = (ecRule[4] - ec) / (ecRule[4] - ecRule[3]); pec = 3; } else if (ecRule[4] <= ec && ec < ecRule[5]) { ecFuzzy[0] = (ecRule[5] - ec) / (ecRule[5] - ecRule[4]); pec = 4; } else if (ecRule[5] <= ec && ec < ecRule[6]) { ecFuzzy[0] = (ecRule[6] - ec) / (ecRule[6] - ecRule[5]); pec = 5; } else { ecFuzzy[0] = 0.0; pec = 5; } ecFuzzy[1] = 1.0 - ecFuzzy[0]; /*********查询模糊规则表*********/ num = KpRule[pe, pec]; KpFuzzy[num] += eFuzzy[0] * ecFuzzy[0]; num = KpRule[pe, pec + 1]; KpFuzzy[num] += eFuzzy[0] * ecFuzzy[1]; num = KpRule[pe + 1, pec]; KpFuzzy[num] += eFuzzy[1] * ecFuzzy[0]; num = KpRule[pe + 1, pec + 1]; KpFuzzy[num] += eFuzzy[1] * ecFuzzy[1]; /*********加权平均法解模糊*********/ Kp_calcu = KpFuzzy[0] * kpRule[0] + KpFuzzy[1] * kpRule[1] + KpFuzzy[2] * kpRule[2] + KpFuzzy[3] * kpRule[3]; return (Kp_calcu); } /*********************************************** 函数功能:PID参数Ki的计算 ************************************************/ double fuzzy_ki(double e, double ec) { double Ki_calcu; int num, pe, pec; double[] eRule = { -3.0, -2.0, -1.0, 0.0, 1.0, 2.0, 3.0 }; double[] ecRule = { -3.0, -2.0, -1.0, 0.0, 1.0, 2.0, 3.0 }; double[] eFuzzy = { 0.0, 0.0 }; double[] ecFuzzy = { 0.0, 0.0 }; double[] kiRule = { 0.00, 0.01, 0.02, 0.03 }; double[] KiFuzzy = { 0.0, 0.0, 0.0, 0.0 }; int[,] KiRule = { { 0,0,0,0,0,0,0 }, { 0,0,0,0,0,0,0 }, { 0,0,0,0,0,0,0 }, { 0,0,0,0,0,0,0 }, { 0,0,0,0,0,0,0 }, { 2,0,0,0,0,0,1 }, { 3,3,3,3,3,3,3 } }; /*****误差隶属函数描述*****/ if (e < eRule[0]) { eFuzzy[0] = 1.0; pe = 0; } else if (eRule[0] <= e && e < eRule[1]) { eFuzzy[0] = (eRule[1] - e) / (eRule[1] - eRule[0]); pe = 0; } else if (eRule[1] <= e && e < eRule[2]) { eFuzzy[0] = (eRule[2] - e) / (eRule[2] - eRule[1]); pe = 1; } else if (eRule[2] <= e && e < eRule[3]) { eFuzzy[0] = (eRule[3] - e) / (eRule[3] - eRule[2]); pe = 2; } else if (eRule[3] <= e && e < eRule[4]) { eFuzzy[0] = (eRule[4] - e) / (eRule[4] - eRule[3]); pe = 3; } else if (eRule[4] <= e && e < eRule[5]) { eFuzzy[0] = (eRule[5] - e) / (eRule[5] - eRule[4]); pe = 4; } else if (eRule[5] <= e && e < eRule[6]) { eFuzzy[0] = (eRule[6] - e) / (eRule[6] - eRule[5]); pe = 5; } else { eFuzzy[0] = 0.0; pe = 5; } eFuzzy[1] = 1.0 - eFuzzy[0]; /*****误差变化隶属函数描述*****/ if (ec < ecRule[0]) { ecFuzzy[0] = 1.0; pec = 0; } else if (ecRule[0] <= ec && ec < ecRule[1]) { ecFuzzy[0] = (ecRule[1] - ec) / (ecRule[1] - ecRule[0]); pec = 0; } else if (ecRule[1] <= ec && ec < ecRule[2]) { ecFuzzy[0] = (ecRule[2] - ec) / (ecRule[2] - ecRule[1]); pec = 1; } else if (ecRule[2] <= ec && ec < ecRule[3]) { ecFuzzy[0] = (ecRule[3] - ec) / (ecRule[3] - ecRule[2]); pec = 2; } else if (ecRule[3] <= ec && ec < ecRule[4]) { ecFuzzy[0] = (ecRule[4] - ec) / (ecRule[4] - ecRule[3]); pec = 3; } else if (ecRule[4] <= ec && ec < ecRule[5]) { ecFuzzy[0] = (ecRule[5] - ec) / (ecRule[5] - ecRule[4]); pec = 4; } else if (ecRule[5] <= ec && ec < ecRule[6]) { ecFuzzy[0] = (ecRule[6] - ec) / (ecRule[6] - ecRule[5]); pec = 5; } else { ecFuzzy[0] = 0.0; pec = 5; } ecFuzzy[1] = 1.0 - ecFuzzy[0]; /***********查询模糊规则表***************/ num = KiRule[pe, pec]; KiFuzzy[num] += eFuzzy[0] * ecFuzzy[0]; num = KiRule[pe, pec + 1]; KiFuzzy[num] += eFuzzy[0] * ecFuzzy[1]; num = KiRule[pe + 1, pec]; KiFuzzy[num] += eFuzzy[1] * ecFuzzy[0]; num = KiRule[pe + 1, pec + 1]; KiFuzzy[num] += eFuzzy[1] * ecFuzzy[1]; /********加权平均法解模糊********/ Ki_calcu = KiFuzzy[0] * kiRule[0] + KiFuzzy[1] * kiRule[1] + KiFuzzy[2] * kiRule[2] + KiFuzzy[3] * kiRule[3]; return (Ki_calcu); } /*********************************************** 函数功能:PID参数Kd的计算 ************************************************/ double fuzzy_kd(double e, double ec) { double Kd_calcu; int num, pe, pec; double[] eRule = { -3.0, -2.0, -1.0, 0.0, 1.0, 2.0, 3.0 }; double[] ecRule = { -3.0, -2.0, -1.0, 0.0, 1.0, 2.0, 3.0 }; double[] eFuzzy = { 0.0, 0.0 }; double[] ecFuzzy = { 0.0, 0.0 }; double[] kdRule = { 0.0, 1.0, 2.0, 3.0 }; double[] KdFuzzy = { 0.0, 0.0, 0.0, 0.0 }; int[,] KdRule = { { 3,3,3,2,2,2,2 }, { 2,2,2,1,1,1,1 }, { 1,1,2,1,1,2,1 }, { 1,1,0,1,0,1,1 }, { 1,1,0,0,0,1,1 }, { 2,2,1,0,1,1,1 }, { 3,3,3,3,2,3,2 } }; /*****误差隶属函数描述*****/ if (e < eRule[0]) { eFuzzy[0] = 1.0; pe = 0; } else if (eRule[0] <= e && e < eRule[1]) { eFuzzy[0] = (eRule[1] - e) / (eRule[1] - eRule[0]); pe = 0; } else if (eRule[1] <= e && e < eRule[2]) { eFuzzy[0] = (eRule[2] - e) / (eRule[2] - eRule[1]); pe = 1; } else if (eRule[2] <= e && e < eRule[3]) { eFuzzy[0] = (eRule[3] - e) / (eRule[3] - eRule[2]); pe = 2; } else if (eRule[3] <= e && e < eRule[4]) { eFuzzy[0] = (eRule[4] - e) / (eRule[4] - eRule[3]); pe = 3; } else if (eRule[4] <= e && e < eRule[5]) { eFuzzy[0] = (eRule[5] - e) / (eRule[5] - eRule[4]); pe = 4; } else if (eRule[5] <= e && e < eRule[6]) { eFuzzy[0] = (eRule[6] - e) / (eRule[6] - eRule[5]); pe = 5; } else { eFuzzy[0] = 0.0; pe = 5; } eFuzzy[1] = 1.0 - eFuzzy[0]; /*****误差变化隶属函数描述*****/ if (ec < ecRule[0]) { ecFuzzy[0] = 1.0; pec = 0; } else if (ecRule[0] <= ec && ec < ecRule[1]) { ecFuzzy[0] = (ecRule[1] - ec) / (ecRule[1] - ecRule[0]); pec = 0; } else if (ecRule[1] <= ec && ec < ecRule[2]) { ecFuzzy[0] = (ecRule[2] - ec) / (ecRule[2] - ecRule[1]); pec = 1; } else if (ecRule[2] <= ec && ec < ecRule[3]) { ecFuzzy[0] = (ecRule[3] - ec) / (ecRule[3] - ecRule[2]); pec = 2; } else if (ecRule[3] <= ec && ec < ecRule[4]) { ecFuzzy[0] = (ecRule[4] - ec) / (ecRule[4] - ecRule[3]); pec = 3; } else if (ecRule[4] <= ec && ec < ecRule[5]) { ecFuzzy[0] = (ecRule[5] - ec) / (ecRule[5] - ecRule[4]); pec = 4; } else if (ecRule[5] <= ec && ec < ecRule[6]) { ecFuzzy[0] = (ecRule[6] - ec) / (ecRule[6] - ecRule[5]); pec = 5; } else { ecFuzzy[0] = 0.0; pec = 5; } ecFuzzy[1] = 1.0 - ecFuzzy[0]; /***********查询模糊规则表*************/ num = KdRule[pe, pec]; KdFuzzy[num] += eFuzzy[0] * ecFuzzy[0]; num = KdRule[pe, pec + 1]; KdFuzzy[num] += eFuzzy[0] * ecFuzzy[1]; num = KdRule[pe + 1, pec]; KdFuzzy[num] += eFuzzy[1] * ecFuzzy[0]; num = KdRule[pe + 1, pec + 1]; KdFuzzy[num] += eFuzzy[1] * ecFuzzy[1]; /********加权平均法解模糊********/ Kd_calcu = KdFuzzy[0] * kdRule[0] + KdFuzzy[1] * kdRule[1] + KdFuzzy[2] * kdRule[2] + KdFuzzy[3] * kdRule[3]; return (Kd_calcu); } public void test() { for (int i = 0; i < 50; i++) { this.PID_Calculate(); Kp = this.fuzzy_kp(Err / 5, D_Err); //E量化因子5 Ki = this.fuzzy_ki(Err / 5, D_Err); Kd = this.fuzzy_kd(Err / 5, D_Err); Console.WriteLine($"{S_temp} {P_temp} {Kp} {Ki} {Kd}"); if (S_temp > P_temp) { P_temp += U / 10; } else { P_temp -= U / 10; } if (i > 20) { S_temp = 30; } } } } }
标签:比较 sig 类型 i++ 假设 矩阵 实现 str 问题
原文地址:https://www.cnblogs.com/gxrsprite/p/12155890.html