标签:pip overflow auto let 文件 一个 ali 并且 letter
项目地址:https://github.com/cool-RR/pysnooper
一般情况下,想要知道哪一行代码在运行、哪一行不运行、本地变量的值是多少时,大部分人会使用 print 函数,在关键部分打印某个或某组变量的值、形状、类型等信息。
而 PySnooper 让你能快速地获得这些信息,且相比之下它不需要细致地写 print 函数,只需要向感兴趣的函数增加一个装饰器就行了。我们会得到该函数的详细 log,包含哪行代码能运行、什么时候运行以及本地变量变化的确切时间。相比于其他代码智能工具,PySnooper 为何如此优秀?因为不需要任何设置,你就可以在劣等、不规则的企业代码库上使用 PySnooper。只需要加个装饰器,并为日志输出地址指定路径就行了。这样说可能不太直观,下面我们可以具体看个案例,PySnooper 的优秀就能一目了然。
PySnooper 案例
下面项目作者写了一个函数以将数值转换为二进制码,该函数返回的是一个二进制列表。下面我们将装饰器 @pysnooper.snoop() 加到该函数上,就大功告成了。
import pysnooper
@pysnooper.snoop()
def number_to_bits(number):
if number:
bits = []
while number:
number, remainder = divmod(number, 2)
bits.insert(0, remainder)
return bits
else:
return [0]
number_to_bits(6)
PySnooper 详细特征
如果标准错误输出难以获得,或者太长了,那么可以将输出定位到本地文件:
@pysnooper.snoop(‘/my/log/file.log‘)
查看一些非本地变量的值:
@pysnooper.snoop(variables=(‘foo.bar‘, ‘self.whatever‘))
展示我们函数中调用函数的 snoop 行:
@pysnooper.snoop(depth=2)
将所有 snoop 行以某个前缀开始,更容易定位和找到:
@pysnooper.snoop(prefix=‘ZZZ ‘)
演示 PySnooper
下面我们最开始尝试使用 PySnooper 获取 TensorFlow 的信息,如果它能获取各种张量信息,那可就太强大了。
首先使用 pip 安装包:
pip install pysnooper
果然,TensorFlow 这种静态图并不能很好地获取信息,读者也可尝试一下。后面我们试了试 NumPy,希望能获取整个计算流的信息。如下代码所示,我们创建了两个数组变量,并且 2×2 的矩阵会连乘多次,如果能追踪到这种连乘,那就比较好处理错误。
import pysnooper
import numpy as np
@pysnooper.snoop()
def multi_matmul(times):
x = np.random.rand(2, 2)
w = np.random.rand(2, 2)
for i in range(times):
x = np.matmul(x, w)
return x
multi_matmul(3)
Python 怎样 DeBug? 极简DeBug工具PySnooper
标签:pip overflow auto let 文件 一个 ali 并且 letter
原文地址:https://www.cnblogs.com/qxh-beijing2016/p/12157403.html