标签:ring pen span scan code 子串 长度 ++ can
求两个字符串的最长公共子串。
把两个字符串拼起来,问题就转化为了求任意两个后缀的 \(lcp\) 的最大长度。
显然这个最大长度是 \(height_i\) 的值,\(\text{SA}\) 求解即可。
需要注意的是,对于 \(height_i\) 需要判断一下 \(SA_i\) 和 \(SA_{i-1}\) 是否在不同的串中。
#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cstring>
using namespace std;
const int _ = 2e5 + 10;
int N, n, m, rnk[_], sa[_], height[_];
char s[_];
void SA() {
static int a[_], buc[_], fir[_], sec[_], tmp[_];
static char t[_];
copy(s + 1, s + N + 1, t + 1);
sort(t + 1, t + N + 1);
char *end = unique(t + 1, t + N + 1);
for (int i = 1; i <= N; ++i) a[i] = lower_bound(t + 1, end, s[i]) - t;
for (int i = 1; i <= N; ++i) ++buc[a[i]];
for (int i = 1; i <= N; ++i) buc[i] += buc[i - 1];
for (int i = 1; i <= N; ++i) rnk[i] = buc[a[i] - 1] + 1;
for (int len = 1; len <= N; len <<= 1) {
for (int i = 1; i <= N; ++i) {
fir[i] = rnk[i];
sec[i] = i + len > N ? 0 : rnk[i + len];
}
fill(buc + 1, buc + N + 1, 0);
for (int i = 1; i <= N; ++i) ++buc[sec[i]];
for (int i = 1; i <= N; ++i) buc[i] += buc[i - 1];
for (int i = 1; i <= N; ++i) tmp[N - --buc[sec[i]]] = i;
fill(buc + 1, buc + N + 1, 0);
for (int i = 1; i <= N; ++i) ++buc[fir[i]];
for (int i = 1; i <= N; ++i) buc[i] += buc[i - 1];
for (int i, j = 1; j <= N; ++j) {
i = tmp[j];
sa[buc[fir[i]]--] = i;
}
bool only = true;
for (int i, j = 1, last = 0; j <= N; ++j) {
i = sa[j];
if (!last) rnk[i] = 1;
else if (fir[i] == fir[last] && sec[i] == sec[last])
rnk[i] = rnk[last], only = false;
else rnk[i] = rnk[last] + 1;
last = i;
}
if (only) break;
}
for (int i = 1, k = 0; i <= N; ++i) {
if (rnk[i] == 1) k = 0;
else {
if (k > 0) --k;
int j = sa[rnk[i] - 1];
while (i + k <= N && j + k <= N && a[i + k] == a[j + k]) ++k;
}
height[rnk[i]] = k;
}
}
bool check(int i, int j) {
return (i <= n && j > n) | (i > n && j <= n);
}
int main() {
#ifndef ONLINE_JUDGE
freopen("message.in", "r", stdin);
freopen("message.out", "w", stdout);
#endif
scanf("%s", s + 1);
n = N = strlen(s + 1);
scanf("%s", s + N + 1);
N = strlen(s + 1);
m = N - n;
SA();
int ans = 0;
for (int i = 2; i <= N; ++i)
if (check(sa[i], sa[i - 1])) ans = max(ans, height[i]);
printf("%d\n", ans);
return 0;
}
POJ2774 Long Long Message - 后缀数组
标签:ring pen span scan code 子串 长度 ++ can
原文地址:https://www.cnblogs.com/newbielyx/p/12158792.html