标签:top break 两种 int swa ati lse 一起 code
给定两个字符串,求出在两个字符串中各取出一个子串使得这两个子串相同的方案数。两个方案不同当且仅当这两个子串中有一个位置不同。
我们把两个字符串接在一起,中间加一个分隔符。如\(\text{AABB}\)和\(\text{BBAA}\)变成\(\text{AABB|BBAA}\)。我们考虑两个相同字串,如\(\text{BB}\),它在新串中对应了两个后缀\(BB|BBAA\)和\(\text{BBAA}\)的LCP. 容易发现,LCP永远不会同时包括分隔符两端的字符,这样就保证了两个子串是从原来两个字符串中的某个取出的。
所以我们可以枚举两个后缀,然后用ST表查询最小值求出LCP.但是这样的复杂度是\(O(n^2)\)的,需要优化。
考虑到利用Height数组求任意两个后缀的LCP时的独特性质:两个后缀的LCP为对应区间height的最小值。也就是说排序后,一个后缀越往后数LCP的长度越小。这样,我们就可以用单调栈维护这个最小值。分A串的子串在前、B的子串在前两种情况分别用单调栈求出答案
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<queue>
#define maxn 400000
using namespace std;
typedef long long ll;
int n,m,tot;
char a[maxn+5],b[maxn+5],s[maxn+5];
void sort(int *ans,int *fi,int *se,int sz,int maxv){
static int buck[maxn+5];
for(int i=0;i<=maxv;i++) buck[i]=0;
for(int i=1;i<=sz;i++) buck[fi[i]]++;
for(int i=0;i<=maxv;i++) buck[i]+=buck[i-1];
for(int i=sz;i>=1;i--) ans[buck[fi[se[i]]]--]=se[i];
}
int sa[maxn+5];
int rk[maxn+5];
int height[maxn+5];
void suffix_sort(char *str,int n,int m){
static int se[maxn+5];
for(int i=1;i<=n;i++){
rk[i]=str[i];
se[i]=i;
}
sort(sa,rk,se,n,m);
for(int k=1;k<=n;k*=2){
int p=0;
for(int i=n-k+1;i<=n;i++) se[++p]=i;
for(int i=1;i<=n;i++){
if(sa[i]>k) se[++p]=sa[i]-k;
}
sort(sa,rk,se,n,m);
swap(se,rk);
p=1;
rk[sa[1]]=1;
for(int i=2;i<=n;i++){
if(se[sa[i-1]]==se[sa[i]]&&se[sa[i-1]+k]==se[sa[i]+k]) rk[sa[i]]=p;
else rk[sa[i]]=++p;
}
if(p==n) break;
m=p;
}
}
void get_height(char *str,int n,int m){
suffix_sort(str,n,m);
for(int i=1;i<=n;i++) rk[sa[i]]=i;
int k=0;
for(int i=1;i<=n;i++){
if(k) k--;
int j=sa[rk[i]-1];
while(str[i+k]==str[j+k]) k++;
height[rk[i]]=k;
}
}
struct node{
ll a;
ll b;
int h;
node(){
}
node(ll _a,ll _b,int _h){
a=_a;
b=_b;
h=_h;
}
friend bool operator < (node p,node q){
return p.h<q.h;
}
friend node operator + (node p,node q){
return node(p.a+q.a,p.b+q.b,p.h);
}
};
int top=0;
node stk[maxn+5];
int main(){
scanf("%s",a+1);
scanf("%s",b+1);
n=strlen(a+1),m=strlen(b+1);
tot=0;
for(int i=1;i<=n;i++) s[++tot]=a[i];
s[++tot]='|';
for(int i=1;i<=n;i++) s[++tot]=b[i];
get_height(s,tot,128);
ll ans=0;
ll cnta=0,cntb=0;
for(int i=2;i<=tot;i++){
node now=node(0,0,height[i]);
if(sa[i-1]<=n) now.a++;
else if(sa[i-1]>n+1) now.b++;
while(top>0&&now<stk[top]){
cnta-=stk[top].a*stk[top].h;
cntb-=stk[top].b*stk[top].h;
now=now+stk[top];
top--;
}
stk[++top]=now;
cnta+=now.a*now.h;
cntb+=now.b*now.h;
if(sa[i]<=n) ans+=cntb;
else if(sa[i]>n+1) ans+=cnta;
}
printf("%lld\n",ans);
}
标签:top break 两种 int swa ati lse 一起 code
原文地址:https://www.cnblogs.com/birchtree/p/12221299.html