标签:算法
Kmeans算是是聚类中的经典算法,过程如下:
选择K个点作为初始质心
repeat
将每个点指派到最近的质心,形成K个簇
重新计算每个簇的质心
until 簇不发生变化或达到最大迭代次数
算法中的K需要人为的指定。确定K的做法有很多,比如多次进行试探,计算误差,得出最好的K。这样需要比较长的时间。我们可以根据Canopy算法来粗略确定K值(可以认为相等)。看一下Canopy算法的过程:
(1)设样本集合为S,确定两个阈值t1和t2,且t1>t2。
(2)任取一个样本点p,作为一个Canopy,记为C,从S中移除p。
(3)计算S中所有点到p的距离dist
(4)若dist<t1,则将相应点归到C,作为弱关联。
(5)若dist<t2,则将相应点移出S,作为强关联。
(6)重复(2)~(5),直至S为空。
Canopy 个数完全可以作为这个K值,一定程度上减少了选择K的盲目性。下面通过Canopy算法对一些点进行计算Canopy的个数,如果仅仅计算K值,则T1没有任何作用,之用指定T2即可,这里使用所有点的平均距离的一半来作为T2.
1
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 |
package cn.edu.ustc.dm.cluster;
import java.util.ArrayList; import java.util.List; import cn.edu.ustc.dm.bean.Point; /** * Canopy算法 借助canopy算法计算对应的Kmeans中的K值大小 * 其中对于计算K值来说,canopy算法中的T1没有意义,只用设定T2(T1>T2) 我们这里将T2设置为平均距离 * * @author YD * */ public class Canopy { private List<Point> points = new ArrayList<Point>(); // 进行聚类的点 private List<List<Point>> clusters = new ArrayList<List<Point>>(); // 存储簇 private double T2 = -1; // 阈值 public Canopy(List<Point> points) { for (Point point : points) // 进行深拷贝 this.points.add(point); } /** * 进行聚类,按照Canopy算法进行计算,将所有点进行聚类 */ public void cluster() { T2 = getAverageDistance(points); while (points.size() != 0) { List<Point> cluster = new ArrayList<Point>(); Point basePoint = points.get(0); // 基准点 cluster.add(basePoint); points.remove(0); int index = 0; while (index < points.size()) { Point anotherPoint = points.get(index); double distance = Math.sqrt((basePoint.x - anotherPoint.x) * (basePoint.x - anotherPoint.x) + (basePoint.y - anotherPoint.y) * (basePoint.y - anotherPoint.y)); if (distance <= T2) { cluster.add(anotherPoint); points.remove(index); } else { index++; } } clusters.add(cluster); } } /** * 得到Cluster的数目 * * @return 数目 */ public int getClusterNumber() { return clusters.size(); } /** * 获取Cluster对应的中心点(各点相加求平均) * * @return */ public List<Point> getClusterCenterPoints() { List<Point> centerPoints = new ArrayList<Point>(); for (List<Point> cluster : clusters) { centerPoints.add(getCenterPoint(cluster)); } return centerPoints; } /** * 得到的中心点(各点相加求平均) * * @return 返回中心点 */ private double getAverageDistance(List<Point> points) { double sum = 0; int pointSize = points.size(); for (int i = 0; i < pointSize; i++) { for (int j = 0; j < pointSize; j++) { if (i == j) continue; Point pointA = points.get(i); Point pointB = points.get(j); sum += Math.sqrt((pointA.x - pointB.x) * (pointA.x - pointB.x) + (pointA.y - pointB.y) * (pointA.y - pointB.y)); } } int distanceNumber = pointSize * (pointSize + 1) / 2; double T2 = sum / distanceNumber / 2; // 平均距离的一半 return T2; } /** * 得到的中心点(各点相加求平均) * * @return 返回中心点 */ private Point getCenterPoint(List<Point> points) { double sumX = 0; double sumY = 0; for (Point point : points) { sumX += point.x; sumY += point.y; } int clusterSize = points.size(); Point centerPoint = new Point(sumX / clusterSize, sumY / clusterSize); return centerPoint; } /** * 获取阈值T2 * * @return 阈值T2 */ public double getThreshold() { return T2; } /** * 测试9个点,进行操作 * @param args */ public static void main(String[] args) { List<Point> points = new ArrayList<Point>(); points.add(new Point(0, 0)); points.add(new Point(0, 1)); points.add(new Point(1, 0)); points.add(new Point(5, 5)); points.add(new Point(5, 6)); points.add(new Point(6, 5)); points.add(new Point(10, 2)); points.add(new Point(10, 3)); points.add(new Point(11, 3)); Canopy canopy = new Canopy(points); canopy.cluster(); //获取canopy数目 int clusterNumber = canopy.getClusterNumber(); System.out.println(clusterNumber); //获取canopy中T2的值 System.out.println(canopy.getThreshold()); } } |
以上代码是对9个点使用Canopy算法进行计算,获取Canopy数目,也即K。
更多文章请前往小胖轩.
标签:算法
原文地址:http://blog.csdn.net/dliyuedong/article/details/40711399