码迷,mamicode.com
首页 > 编程语言 > 详细

ST算法(RMQ区间最值问题)

时间:2020-01-23 19:48:21      阅读:81      评论:0      收藏:0      [点我收藏+]

标签:时间   数列   i++   覆盖   最小   计算   个数   左右   nlogn   

ST算法能在O(NlogN)时间内对数列a预处理,以O(1)的时间复杂度在线回答“数列a中下标在l~r之间的数的最大(小)值是多少
预处理:
f[i][j]表示数列a中下标在子区间[i,i+2^j-1]里的数的最大(小)值,即i开始的2^j个数的最大(小)值
f[i][j]=max(f[i][j-1],f[i+2^j-1][j-1],即长度为2^j的子区间的最大值是左右两半长度为2^(j-1)的子区间的最大值中较大的一个
 
void ST_prework(){
   for(int i=1;i<=n;i++) f[i][0]=a[i];
   int t=log(n)/log(2)+1;
   for(int j=1;j<t;j++){
      for(int i=1;i<=n-(1<<j)+1;i++){
        fi][j]=max(f[i][j-1],f[i+(1<<(j-1))][j-1];//(此处为求最大值,最小值将max换为min即可)
     }
   }
}
 
询问区间[l,r]:
先计算k,满足2^k<r-l+1<2^(k+1),也就是使2的k次幂小于区间长度的前提下最大的k。那么“从l开始的2^k个数”和“以r结尾的2^k个数”这两段一定覆盖了整个区间[l,r],这两段的最大(小)值分别为f[l][k]和f[r-2^k+1,k],两者中较大(小)的那个就是整个区间[l,r]的最值。
int ST_query(int l,int r){
   int k=log(r-l+1)/log(2);
   return max(f[l][k],f[r-(1<<k)+1][k];//(此处为求最大值,最小值将max换为min即可)
}

 

ST算法(RMQ区间最值问题)

标签:时间   数列   i++   覆盖   最小   计算   个数   左右   nlogn   

原文地址:https://www.cnblogs.com/gcw0618/p/12231019.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!