标签:www 变化 font import res mit 就是 信息 task
信号量
其实本质上是锁,Lock是单锁,信号量是指定多把锁,也就是说通过信号量指定多个数线程可以访问相同资源,一般情况下读操作可以有多个,但写操作同时只有一个
信号量模块 semaphore
# 使用起来和普通锁没 什么区别,但这个是比锁更加粗粒度锁,锁的是线程
# 在线程实例前加锁,把锁传递进线程,在线程结束时候释放锁
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
|
from threading import Thread, Semaphore from queue import Queue def add(chan, sem_lock): for i in range ( 10 ): chan.put(i) # 释放锁 sem_lock.release() if __name__ = = ‘__main__‘ : numbers = Queue() # 申明信号量 sem_lock = Semaphore( 4 ) sem_lock.acquire() # 把锁传递进线程 tasks = {Thread(target = add, args = (numbers, sem_lock), name = "北门吹雪 %s" % i) for i in range ( 10 )} for task in tasks: task.start() for task in tasks: task.join() print (numbers.get()) |
线程池
不仅仅是数量控制,可以获取线程状态、任务状态、线程返回值等信息
线程池模块 ThreadPollExecutor
线程池使用过程
1. 实例化线程池
2. 提交任务,会有个返回对象,submit是不会堵塞,立即返回
3. 让主线程等待线程执行完成
4. 关闭线程池
获取状态信息 线程对象
1. 判断是否执行完 .done()
2. 获取任务执行结果,堵塞 .result()
3. 取消任务 .cancle()
对多个线程列表获取结果 线程对象
1. as_complated 获取已经执行完成的线程结果
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
|
def add(number, name): sum = 0 for i in range (number): sum + = i # 模拟个线程执行堵塞情况 time.sleep(random()) # 返回线程执行结果 return sum if __name__ = = ‘__main__‘ : thread_pool = ThreadPoolExecutor(max_workers = 3 ) print ( "北门吹雪:http://www.cnblogs.com/2bjiujiu/" ) name = "北门吹雪" tasks = {thread_pool.submit(add, randint( 10 , 20 ), name) for _ in range ( 20 )} # map方法和as_completed最大区别在于map变化的只是参数线程是同一个线程,而as_completed可以执行不同的线程任务 for data in thread_pool. map (add, {randint( 10 , 20 ) for _ in range ( 20 )}): print (data) |
2. map 直接返回线程执行结果,保持传递进去顺序
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
|
def add(number): sum = 0 for i in range (number): sum + = i # 模拟个线程执行堵塞情况 time.sleep(random()) # 返回线程执行结果 return sum if __name__ = = ‘__main__‘ : print ( "北门吹雪" ) thread_pool = ThreadPoolExecutor(max_workers = 3 ) tasks = {thread_pool.submit(add, randint( 10 , 20 )) for _ in range ( 20 )} # map方法和as_completed最大区别在于map变化的只是参数线程是同一个线程,而as_completed可以执行不同的线程任务 for data in thread_pool. map (add, {randint( 10 , 20 ) for _ in range ( 20 )}): print (data) |
3. wait 等待所有线程执行完成
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
|
from concurrent.futures import ThreadPoolExecutor, as_completed, wait from random import randint, random import time def add(number): sum = 0 for i in range (number): sum + = i # 模拟个线程执行堵塞情况 time.sleep(random()) # 返回线程执行结果 return sum if __name__ = = ‘__main__‘ : thread_pool = ThreadPoolExecutor(max_workers = 3 ) tasks = {thread_pool.submit(add, randint( 10 , 20 )) for _ in range ( 20 )} print ( "北门吹雪" ) # 主线程等待所有子线程执行完,不需要结果 # wait(tasks) |
1
|
<span style = "font-family: ‘Microsoft YaHei‘;" >北门吹雪:http: / / www.cnblogs.com / 2bjiujiu / < / span> |
经验:
1. 线程池和信号量在某种程度如允许执行的线程数效果上是一样,但线程池可以获取线程执行结果得到线程执行状态
2. 使用线程池需要首先实例化,然后提交线程,返回线程对象,然后在主线程中选择获取结果或者不需要结果,也可以选择堵塞等待线程执行完或不等待线程执行完
3. 获取线程执行结果,可以参照Go语言中CSP通信模式,个人觉得这是个非常好的解决方案,这样的线程池接口提交远比CSP通信来的复杂
标签:www 变化 font import res mit 就是 信息 task
原文地址:https://www.cnblogs.com/LucasSong/p/12262879.html