码迷,mamicode.com
首页 > Web开发 > 详细

ue4 lightmass研究

时间:2020-02-05 20:40:37      阅读:144      评论:0      收藏:0      [点我收藏+]

标签:mmap   elements   tty   normal   eva   editor   spro   opened   eof   

Exporter.cpp文件中:导出shadowDepthMap:

void FLightmassSolverExporter::ExportStaticShadowDepthMap(const FGuid& LightGuid, const FStaticShadowDepthMap& StaticShadowDepthMap) const
	{
		const FString ChannelName = CreateChannelName(LightGuid, LM_DOMINANTSHADOW_VERSION, LM_DOMINANTSHADOW_EXTENSION);
		const int32 ErrorCode = Swarm->OpenChannel(*ChannelName, LM_DOMINANTSHADOW_CHANNEL_FLAGS, true);
		if( ErrorCode >= 0 )
		{
			Swarm->Write(&StaticShadowDepthMap, sizeof(FStaticShadowDepthMapData));
			static_assert(sizeof(FStaticShadowDepthMapSample) == sizeof(FStaticShadowDepthMapSampleData), "ShadowDerivedSizeMustMatch");
			WriteArray(StaticShadowDepthMap.ShadowMap);
			Swarm->CloseCurrentChannel();
		}
		else
		{
			UE_LOG(LogLightmass, Log, TEXT("Failed to open static shadow depth map channel!"));
		}
	}

  WriteArray函数是将TArray中的数据写道swarm栈的顶:

/** Writes a TArray to the channel on the top of the Swarm stack. */
	template<class T>
	void FLightmassSolverExporter::WriteArray(const TArray<T>& Array) const
	{
		const int32 ArrayNum = Array.Num();
		Swarm->Write((void*)&ArrayNum, sizeof(ArrayNum));
		if (ArrayNum > 0)
		{
			Swarm->Write(Array.GetData(), Array.GetTypeSize() * ArrayNum);
		}
	}

  输出staticLightData:

int32 FLightmassSolverExporter::BeginExportResults(struct FTextureMappingStaticLightingData& LightingData, uint32 NumMappings) const
	{
		const FString ChannelName = CreateChannelName(LightingData.Mapping->Guid, LM_TEXTUREMAPPING_VERSION, LM_TEXTUREMAPPING_EXTENSION);
		const int32 ErrorCode = Swarm->OpenChannel(*ChannelName, LM_TEXTUREMAPPING_CHANNEL_FLAGS, true);
		if( ErrorCode < 0 )
		{
			UE_LOG(LogLightmass, Log, TEXT("Failed to open texture mapping channel %s!"), *ChannelName);
		}
		else
		{
			// Write out the number of mappings this channel will contain
			Swarm->Write(&NumMappings, sizeof(NumMappings));
		}
		return ErrorCode;
	}

  这个函数被ExportResults函数调用:

void FLightmassSolverExporter::ExportResults( FTextureMappingStaticLightingData& LightingData, bool bUseUniqueChannel ) const
	{
		UE_LOG(LogLightmass, Verbose, TEXT("Exporting texture lighting %s [%.3fs]"), *(LightingData.Mapping->Guid.ToString()), LightingData.ExecutionTime);

		// If requested, use a unique channel for this mapping, otherwise, just use the one that is already open
		if (bUseUniqueChannel)
		{
			if (BeginExportResults(LightingData, 1) < 0)
			{
				return;
			}
		}

		const int32 PaddedOffset = LightingData.Mapping->bPadded ? 1 : 0;
		const int32 DebugSampleIndex = LightingData.Mapping == Scene.DebugMapping
			? (Scene.DebugInput.LocalY + PaddedOffset) * LightingData.Mapping->SizeX + Scene.DebugInput.LocalX + PaddedOffset
			: INDEX_NONE;

		if (bDumpTextures)
		{
			WriteBitmap<4>(*(LightingData.Mapping->Guid.ToString() + TEXT("_LM")), LightingData.LightMapData->GetData(), LightingData.LightMapData->GetSizeX(), LightingData.LightMapData->GetSizeY());
		}

		// If we need to compress the data before writing out, do it now
		LightingData.LightMapData->Compress(DebugSampleIndex);
//		UE_LOG(LogLightmass, Log, TEXT("LM data went from %d to %d bytes"), LightingData.LightMapData->UncompressedDataSize, LightingData.LightMapData->CompressedDataSize);

		const int32 ShadowMapCount = LightingData.ShadowMaps.Num();
		const int32 SignedDistanceFieldShadowMapCount = LightingData.SignedDistanceFieldShadowMaps.Num();
		const int32 NumLights = LightingData.LightMapData->Lights.Num();
	
#pragma pack (push,1)
		struct FTextureHeader
		{
			FTextureHeader(FGuid& InGuid, double InExecutionTime, FLightMapData2DData& InData, int32 InShadowMapCount, int32 InSignedDistanceFieldShadowMapCount, int32 InLightCount)
				: Guid(InGuid), ExecutionTime(InExecutionTime), Data(InData), ShadowMapCount(InShadowMapCount), SignedDistanceFieldShadowMapCount(InSignedDistanceFieldShadowMapCount), LightCount(InLightCount)
			{}
			FGuid Guid;
			double ExecutionTime;
			FLightMapData2DData Data;
			int32 ShadowMapCount;
			int32 SignedDistanceFieldShadowMapCount;
			int32 LightCount;
		};
#pragma pack (pop)
		FTextureHeader Header(LightingData.Mapping->Guid, LightingData.ExecutionTime, *(FLightMapData2DData*)LightingData.LightMapData, LightingData.ShadowMaps.Num(), LightingData.SignedDistanceFieldShadowMaps.Num(), NumLights);
		Swarm->Write(&Header, sizeof(Header));

		for (int32 LightIndex = 0; LightIndex < NumLights; LightIndex++)
		{
			FGuid CurrentGuid = LightingData.LightMapData->Lights[LightIndex]->Guid;
			Swarm->Write(&CurrentGuid, sizeof(CurrentGuid));
		}

		// Write out compressed data if supported
		Swarm->Write(LightingData.LightMapData->GetCompressedData(), LightingData.LightMapData->CompressedDataSize ? LightingData.LightMapData->CompressedDataSize : LightingData.LightMapData->UncompressedDataSize);

		// The resulting light GUID --> shadow map data
		int32 ShadowIndex = 0;

		for (TMap<const FLight*,FSignedDistanceFieldShadowMapData2D*>::TIterator It(LightingData.SignedDistanceFieldShadowMaps); It; ++It, ++ShadowIndex)
		{
			FGuid OutGuid = It.Key()->Guid;
			FSignedDistanceFieldShadowMapData2D* OutData = It.Value();

			// If we need to compress the data before writing out, do it now
			OutData->Compress(INDEX_NONE);

			Swarm->Write(&OutGuid, sizeof(FGuid));
			Swarm->Write((FSignedDistanceFieldShadowMapData2DData*)OutData, sizeof(FSignedDistanceFieldShadowMapData2DData));

			// Write out compressed data if supported
			Swarm->Write(OutData->GetCompressedData(), OutData->CompressedDataSize ? OutData->CompressedDataSize : OutData->UncompressedDataSize);
		}

		WriteDebugLightingOutput(LightingData.DebugOutput);

		// free up the calculated data
		delete LightingData.LightMapData;
		LightingData.ShadowMaps.Empty();
		LightingData.SignedDistanceFieldShadowMaps.Empty();

		// Only close the channel if we opened it
		if (bUseUniqueChannel)
		{
			EndExportResults();
		}
	}

  一个贴图映射的静态光照数据:

/** The static lighting data for a texture mapping. */
struct FTextureMappingStaticLightingData
{
	FStaticLightingTextureMapping* Mapping;
	FLightMapData2D* LightMapData;
	TMap<const FLight*,FShadowMapData2D*> ShadowMaps;
	TMap<const FLight*,FSignedDistanceFieldShadowMapData2D*> SignedDistanceFieldShadowMaps;
	FDebugLightingOutput DebugOutput;

	/** Stores the time this mapping took to process */
	double ExecutionTime;
};  

裏面shadowmapData2D类:

class FShadowMapData2D : public FShadowMapData2DData
	{
	public:
		FShadowMapData2D(uint32 InSizeX,uint32 InSizeY)
			: FShadowMapData2DData(InSizeX, InSizeY)
			, CompressedData(NULL)
		{
			Data.Empty(InSizeX * InSizeY);
			Data.AddZeroed(InSizeX * InSizeY);
		}

		virtual ~FShadowMapData2D(){ }

		// Accessors.
		const FShadowSample& operator()(uint32 X,uint32 Y) const { return Data[SizeX * Y + X]; }
		FShadowSample& operator()(uint32 X,uint32 Y) { return Data[SizeX * Y + X]; }
		uint32 GetSizeX() const { return SizeX; }
		uint32 GetSizeY() const { return SizeY; }

		// USurface interface
		virtual float GetSurfaceWidth() const { return SizeX; }
		virtual float GetSurfaceHeight() const { return SizeY; }

		void Quantize(int32 DebugSampleIndex);

		const FShadowSample* GetData() { return Data.GetData(); }
		const FQuantizedShadowSampleData* GetQuantizedData() { return QuantizedData.GetData(); }

		void Compress(int32 DebugSampleIndex);
		uint8* GetCompressedData()
		{
			return CompressedData;
		}

	private:
		TArray<FShadowSample>				Data;
		TArray<FQuantizedShadowSampleData>	QuantizedData;
		uint8*								CompressedData;
	};

  FSHadowSample类:

/**
	 * A sample of the visibility factor between a light and a single point.
	 */
	class FShadowSample : public FShadowSampleData
	{
	public:
		FShadowSample operator-(const FShadowSample& SampleB) const
		{
			FShadowSample Result;
			Result.bIsMapped = bIsMapped;
			Result.Visibility = Visibility - SampleB.Visibility;
			return Result;
		}
		FShadowSample operator*(const float& Scalar) const
		{
			FShadowSample Result;
			Result.bIsMapped = bIsMapped;
			Result.Visibility = Visibility * Scalar;
			return Result;
		}
	};

  

 

lightmass的Export

StaticLightingTextureMapping继承了StaticLightingMapping、StaticLightingMappingData:

{

FStaticLightingMesh* Mesh; //和映射关联的mesh,用来计算静态光的mesh。

}

FStaticLightingMesh

{

  TArray<FLight*> RelevantLights;

TArray<int32> VisibilityIds;

TArray<FMaterialElement, TInlineAllocator<5>> MaterialElements;

bool IsTranslucent(int32 ElementIndex)

bool IsMasked(int32 ElementIndex)

 bool UsesTwoSidedLighting(int32 ElementIndex)

IsTwoSided(int32 ElementIndex)

bool UseVertexNormalForHemisphereGather(int32 ElementIndex)

virtual void GetTriangle(int32 TriangleIndex,FStaticLightingVertex& OutV0,FStaticLightingVertex& OutV1,FStaticLightingVertex& OutV2,int32& ElementIndex) const = 0;

virtual void GetShadingTriangle(int32 TriangleIndex,FStaticLightingVertex& OutV0,FStaticLightingVertex& OutV1,FStaticLightingVertex& OutV2,int32& ElementIndex) const

void GetTriangleIndices(int32 TriangleIndex,int32& OutI0,int32& OutI1,int32& OutI2)

FLinearColor EvaluateBRDF(
const FStaticLightingVertex& Vertex,
int32 ElementIndex,
const FVector4& IncomingDirection,
const FVector4& OutgoingDirection) const;

FLinearColor SampleBRDF(
const FStaticLightingVertex& Vertex,
int32 ElementIndex,
const FVector4& IncomingDirection,
FVector4& OutgoingDirection,
float& DirectionPDF,
FLMRandomStream& RandomStream
) const;

inline FLinearColor EvaluateEmissive(const FVector2D& UVs, int32 ElementIndex) const;

inline FLinearColor EvaluateDiffuse(const FVector2D& UVs, int32 ElementIndex) const;

 

 

}

用一个空level, 添加一个点光源和一个cube,进行测试,build lightt后生成一张256*256的HQ_Lightmap_1_1和LQ_Lightmap_1_1。前者包含A通道,后者不包含。一张256*128的ShadowMapTexture2D_2,包含R和G通道。一张64*64

的HQ_Lightmap_1_2和LQ_Lightmap_1_2。一张32*32的shadowmapTexture2D_3,4个通道都有东西,东西差不多一样。

空level什么都不添加,build lightt后生成一张256*256的HQ_Lightmap_1_1和LQ_Lightmap_1_1。前者包含A通道,后者不包含。一张128*128的ShadowMapTexture2D_2,包含4个通道,东西一样。一张64*64的HQ_Lightmap_1_2和LQ_Lightmap_1_2。一张32*32的shadowmapTexture2D_3,4个通道都有东西,东西差不多一样。

综合,不同的地方:1. ShadowMapTexture2D_2的大小;2.ShadowMapTexture2D_2的通道数。

 

void UEditorEngine::BuildLighting(const FLightingBuildOptions& Options)函数是编辑器按build lighting only触发的,里面调用了OnLightingBUildStarted.Broadcast()和FStaticLightingManager::Get()->createStaticLightingSystem(Options);

      createStaticLIghtingSystem函数里StaticLightingSystems数组放置光照系统(如果level是光照场景,则每个level场景一个)。然后第一个静态光照系统作为激活的系统,这个系统开启lightmass程序,下面的函数:

            FStaticLightingSystem::BeginLightmassProcess()里面包含 创建lightmass进程(CreateLIghtmassProcessor函数,启动swarm,新建lightmass、关联到swarm),GatherScene函数(lightmassExporter的levelSetting、没用的局部核心、品质等级、level名称、重要度体积、角色间接细节体积、立体lightmap密度体积、lightmassPortal、mesh、mapping、light),初始化lightmass进程(InitiateLightmassProcessor函数)。

ue4 lightmass研究

标签:mmap   elements   tty   normal   eva   editor   spro   opened   eof   

原文地址:https://www.cnblogs.com/Shaojunping/p/12234720.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!