码迷,mamicode.com
首页 > 编程语言 > 详细

浅谈python的第三方库——pandas(二)

时间:2020-02-08 13:24:15      阅读:47      评论:0      收藏:0      [点我收藏+]

标签:第三方库   结束   ima   方式   一个   多个   就是   取出   操作   

pandas使用小贴士

1 通过Series创建DataFrame

在pandas系列的第一篇博文中曾提到,Series可视为DataFrame的一种特例,即只有一列数据。既然如此,是否可以并列多个Series组成一个DataFrame呢?当然可以,通过这种方式创建DataFrame也称为用字典建立数据,由各列列名充当字典的键,该列数据构成的Series充当该键对应的值。示例如下:

技术图片

上图中,Series类型充任df_1的第二列,因为pandas默认以“0,1,2,3”形式给行列命名,本例中,列名就是字典的键,行名默认自动生成,为了与已有行名对应,在创建第二列的Series时指定了行名index=list(range(4))。
另外,numpy中的一维数组也可以起到充当DataFrame某一列数据的作用,如果给某一列赋值时只有一个值,则pandas会自动根据行的数目重复该值以补全该列。

2 查看DataFrame的常用属性

注意:下面的例子是在一个新建的df_2上演示,同样通过上一小节介绍的字典方式创建,但数据量略微大一些。

2.1 查看各列数据类型

技术图片

2.2 查看行列名和具体数据

技术图片

使用values方法可以直接得到和numpy中一样的多维数组形式的数据类型。

2.3 查看数据描述

技术图片

数据描述只是针对数值型数据给出某些列的统计信息。
对于pandas的一些转置、排序操作,这些方法和numpy中的方法无异,在此不再赘述。

3 设定条件选取数据

前一篇博文提到用行列名、行列位置以及二者混合的方式选取数据,其实还有一种通过给定条件选择数据的方法。

技术图片

上图中,设置条件选择A列中大于零的值,然后将其所在的行抽取出来组成新的DataFrame。
当然,也可以在设定条件的同时,指定所要选取的列。

技术图片

本期到此结束,后面将继续介绍pandas的常用操作。

浅谈python的第三方库——pandas(二)

标签:第三方库   结束   ima   方式   一个   多个   就是   取出   操作   

原文地址:https://www.cnblogs.com/pythonfl/p/12276007.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!