标签:武汉 col row 像素 字符 port int offset net
https://blog.csdn.net/xufive/article/details/104059396
import io from PIL import Image import numpy as np import requests def get_word(ch, quality): """获取单个汉字(字符)的图片 ch - 单个汉字或英文字母(仅支持大写) quality - 单字分辨率,H-640像素,M-480像素,L-320像素 """ fp = io.BytesIO(requests.post(url=‘http://xufive.sdysit.com/tk‘, data={‘ch‘: ch}).content) im = Image.open(fp) w, h = im.size if quality == ‘M‘: w, h = int(w * 0.75), int(0.75 * h) elif quality == ‘L‘: w, h = int(w * 0.5), int(0.5 * h) return im.resize((w, h)) def get_bg(quality): """获取春联背景的图片""" return get_word(‘bg‘, quality) def write_couplets(text, HorV=‘V‘, quality=‘L‘, out_file=None): """生成春联 text - 春联内容,以空格断行 HorV - H-横排,V-竖排 quality - 单字分辨率,H-640像素,M-480像素,L-320像素 out_file - 输出文件名 """ usize = {‘H‘: (640, 23), ‘M‘: (480, 18), ‘L‘: (320, 12)} bg_im = get_bg(quality) text_list = [list(item) for item in text.split()] rows = len(text_list) cols = max([len(item) for item in text_list]) if HorV == ‘V‘: ow, oh = 40 + rows * usize[quality][0] + (rows - 1) * 10, 40 + cols * usize[quality][0] else: ow, oh = 40 + cols * usize[quality][0], 40 + rows * usize[quality][0] + (rows - 1) * 10 out_im = Image.new(‘RGBA‘, (ow, oh), ‘#f0f0f0‘) for row in range(rows): if HorV == ‘V‘: row_im = Image.new(‘RGBA‘, (usize[quality][0], cols * usize[quality][0]), ‘white‘) offset = (ow - (usize[quality][0] + 10) * (row + 1) - 10, 20) else: row_im = Image.new(‘RGBA‘, (cols * usize[quality][0], usize[quality][0]), ‘white‘) offset = (20, 20 + (usize[quality][0] + 10) * row) for col, ch in enumerate(text_list[row]): if HorV == ‘V‘: pos = (0, col * usize[quality][0]) else: pos = (col * usize[quality][0], 0) ch_im = get_word(ch, quality) row_im.paste(bg_im, pos) row_im.paste(ch_im, (pos[0] + usize[quality][1], pos[1] + usize[quality][1]), mask=ch_im) out_im.paste(row_im, offset) if out_file: out_im.convert(‘RGB‘).save(out_file) out_im.show() text = ‘武汉加油 中国加油‘ write_couplets(text, HorV=‘V‘, quality=‘M‘, out_file=‘普天同庆.jpg‘)
标签:武汉 col row 像素 字符 port int offset net
原文地址:https://www.cnblogs.com/gisoracle/p/12276113.html